Densities, Excess Molar Volumes, Viscosities, Speeds of Sound, Excess Isentropic Compressibilities, and Relative Permittivities for $C_mH_{2m+1}(OCH_2CH_2)_nOH$ (m = 1 or 2 or 4 and n = 1) + Benzene, + Toluene, + (o-, m-, and p-) Xylenes, + Ethylbenzene, and + Cyclohexane

John George and Nandhibatla V. Sastry*

Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120 Gujarat, India

Measurements on densities, speeds of sound, viscosities, and relative permittivities for 21 binary mixtures of alkoxyethanols (2-methoxyethanol, 2-ethoxyethanol, and 2-butoxyethanol) + benzene, + toluene, + (*o*-, *m*-, and *p*-) xylenes, + ethylbenzene, and + cyclohexane at different temperatures are reported. The excess molar volumes, excess isentropic compressibilities, deviations in dynamic viscosities, speeds of sound, and relative permittivities have been calculated across the mole compositions. The compositional variation of excess and deviation functions has been expressed in terms of the Redlich–Kister equation.

Introduction

sancharnet.in.

The molecules with the general formula $C_mH_{2m+1}(OCH_2)$ -CH₂)_nOH display a wide range of interesting properties and association patterns both in van der Waals clusters^{1,2} and in the condensed phase.³⁻⁷ These characteristics result from interplay of (i) the relative importance of the polar and nonpolar fragments, (ii) conformational degrees of freedom, (iii) the occurrence of intramolecular hydrogen bonding type interactions, and (iv) the extent of intermolecular interactions, hydrogen bonding included. The molecules with m = 1, 2, and 4 and n = 1 are widely used industrial solvents. Besides, these molecules act as model compounds for understanding the structural dynamics of poly(oxyethylene) crown ethers and related compounds.⁸ There are several reports in the literature on the measurements of excess molar enthalpies, $H_{m}^{E,9,10}$ excess molar volumes, $V_{\rm m}^{E,9-12}$ excess isentropic compressibilities, $\kappa_{\rm s}^{\rm E,9-12}$ excess viscosities, $\eta^{\rm E,13}$ and vapor-liquid equilib $ria^{9,10}$ for the lower alkoxyethanols + *n*-aliphatic alkanes. It is generally concluded that *n*-alkanes disrupt the selfassociated structures of alkoxyethanols and such disruptions become more with the increase in the chain length of *n*-alkanes. Few available studies¹⁴⁻¹⁶ on the thermodynamic behavior of alkoxyethanols + aromatic hydrocarbons in terms of calculated $V_{\rm m}^{\rm E}$ and $H_{\rm m}^{\rm E}$ suggested that aromatic hydrocarbons can form weak complexes with the former. With a view to understand the binary systems of alkoxyethanols + aromatic hydrocarbons further, the present study reports various excess and deviation functions, namely, $V_{\rm m}^{\rm E}$, viscosity deviations, $\delta\eta$, deviations in speeds of sound, $\delta v,\,\kappa^{\rm E}_{\rm s},$ and deviations in relative permittivities, $\delta \epsilon_{\rm r}$, as calculated from the measured densities, ρ , dynamic viscosities, η , speed of sound, v, and relative permittivities, $\epsilon_{\rm r}$, for 2-methoxyethanol, 2-ethoxyethanol, or 2-butoxyethanol + aromatic hydrocarbons (benzene, toluene, o-, m-, *p*-xylenes, ethylbenzene) or + cyclohexane mixtures at different temperatures.

* Corresponding author. Fax: 0091-2692-236475. E-mail: nvsastry_ad1@

Experimental Section

Materials. 2-Methoxyethanol, 2-ethoxyethanol, and 2-butoxyethanol were Chiti-Chem, India, products with a stated purity of 99.5% on a mole basis. These chemicals were dried over 4 Å molecular sieves and three times fractionally distilled through a 15 plate column under vacuum with temperature maintained at 100 °C. This procedure reduced the various initial impurities such as water, free acid (as CH₃COOH), and carbonyl compounds. A reagent grade benzene was acquired locally and purified by a standard procedure.¹⁷ Toluene and o-, m-, and pxylenes obtained from Chiti-Chem, India, were further purified by successive shaking with concentrated sulfuric acid, sodium hydroxide solutions, and mercury. They were dried over phosphorus pentoxide and then finally fractionally distilled over a 1 m column. Ethylbenzene procured from Chiti-Chem, India, was of analytical reagent (AR) quality with 99.5% purity (on a mole basis). It was further purified by shaking with concentrated sulfuric acid until the acid layer became colorless and then with sodium carbonate solution and water. Afterward, it was dried over anhydrous magnesium sulfate and fractionally distilled. Cyclohexane was of AR grade from Chiti-Chem, India. It was washed several times in the cold with a mixture of concentrated nitric and sulfuric acids to nitrate any benzene that may have been present. After repeated washings with distilled water, it was fractionally distilled over sodium metal.

Methods. The binary solutions were prepared by mass in hermetically sealed glass vials. The solutions of each composition were prepared fresh, and all the properties were measured the same day. The mass measurements, accurate to ± 0.01 mg, were made on a single pan analytical balance (Dhona 100 DS, India). The estimated accuracy in the mole fraction was ± 0.0001 .

Densities of the pure liquids and their mixtures were measured with a high precision vibrating tube digital density meter (Anton Paar, DMA 5000). The instrument has a built-in thermostat for maintaining desired temperatures in the range 0 to 90 °C. The repeatability of the

Table 1. Densities, ρ , Viscosities, η , Speeds of Sound, v , and Relative Permittivities, ϵ_r , at $T = (298.15 \text{ to } 313.15) \text{ K}$ and
Physicochemical Properties ^a at $T = (298.15 \text{ and } 308.15)$ K for the Pure Components

	T = 2	298.15 K	T = 3	03.15 K	T = 30	8.15 K		T = 31	3.15 K
	exp	lit.	exp	lit.	exp	lit.	e	exp	lit.
p/g·cm ⁻³ η/mPa·s ν/m·s ⁻¹ ε _r	0.960 25(6) 1.592 1339 17.011	$\begin{array}{c} 0.960\ 24^{17}\\ 1.60^{17}\\ 1339.89^{23}\end{array}$	0.955 71(0)	2-Methoxyethanol 0.955 77 ¹⁵	0.953 56(1) 1.242 1328 16.219	$\begin{array}{c} 0.953 \ 56^{24} \\ 1.256^{24} \\ 1327^{25} \end{array}$	0.94	6 34(4)	0.946 3426
o/g·cm ⁻³ ŋ/mPa·s v/m·s ⁻¹ ŧ _r	0.925 20(1) 1.850 1298 13.219	$0.925 \ 20^{17} \\ 1.85^{17} \\ 1301.99^{11}$	0.921 17(8)	2-Ethoxyethanol 0.921 18 ²⁷	0.917 96(9) 1.407 1266 12.269	0.917 97 ²⁵ 1266 ²⁵	0.91	1 59(7)	0.9116 ¹²
$ ho/g \cdot cm^{-3}$ $\eta/mPa \cdot s$ $v/m \cdot s^{-1}$ ϵ_r	0.896 24(8) 2.782 1304 9.446	$\begin{array}{c} 0.896 \ 25^{17} \\ 2.786^{28} \\ 1304.40^{23} \end{array}$	0.892 02(6)	2-Butoxyethanol 0.8924 ²⁹	0.888 91(0) 2.206 1285 8.352	$\begin{array}{c} \textbf{0.888} \ \textbf{73}^{25} \\ \textbf{2.193}^{25} \\ \textbf{1283}^{25} \end{array}$	0.88	3 40(1)	0.8836 ³⁴
o/g·cm ⁻³ ŋ/mPa·s v/m·s ⁻¹ fr	0.873 60(9) 0.602 1299 2.271	$\begin{array}{c} 0.873 \ 60^{17} \\ 0.6028^{17} \\ 1300.45^{30} \\ 2.274^{17} \end{array}$	0.868 28(9)	Benzene 0.868 29 ¹⁷	0.862 95(8) 0.526 1260 2.250	$\begin{array}{c} 0.862 \ 96^{31} \\ 0.528^{32} \\ 2.2540^{33} \end{array}$	0.85	7 97(1)	0.857 99 ³⁴
o/g·cm ⁻³ q/mPa·s v/m·s ⁻¹	0.862 19(9) 0.550 1304 2.408	$\begin{array}{c} 0.862 \ 19^{17} \\ 0.5525^{17} \\ 1304^{32} \\ 2.3807^{17} \end{array}$	0.857 54(5)	Toluene 0.857 54 ¹⁷	0.852 85(8) 0.498 1262 2.381	$\begin{array}{c} 0.8527^{35} \\ 0.498^{32} \end{array}$	0.84	8 15(8)	
o/g·cm ⁻³ ŋ/mPa·s v/m·s ⁻¹	0.875 93(8) 0.759 1348 2 551	$0.875 \ 94^{17}$ 0.756^{17} 2.56^{36}	0.871 71(2)	<i>o</i> -Xylene 0.871 74 ¹⁷	0.867 38(1) 0.658 1322 2 352	$\begin{array}{c} 0.867\ 39^{37}\\ 0.659^{37}\\ 2\ 35^{36} \end{array}$	0.86	3 16(7)	
$\rho/\text{g}\cdot\text{cm}^{-3}$ $\eta/\text{mPa}\cdot\text{s}$ $v/\text{m}\cdot\text{s}^{-1}$ ϵ_{r}	0.859 99(9) 0.582 1320 2.360	0.860 09 ¹⁷ 0.581 ¹⁷	0.855 79(7)	<i>m</i> -Xylene 0.855 81 ¹⁷	0.851 57(7) 0.499 1283 2.310	2.00	0.84	6 69(2)	
$ ho/g \cdot cm^{-3}$ $\eta/mPa \cdot s$ $v/m \cdot s^{-1}$ ϵ_r	0.856 61(8) 0.613 1308 2.268	0.856 61 ¹⁷ 0.610 ¹⁷ 2.260 ³⁸	0.852 24(5)	<i>p</i> -Xylene 0.852 25 ¹⁷	0.847 87(7) 0.540 1276 2.119	$0.8479^{39} \\ 0.539^{40} \\ 1272^{41}$	0.84	3 64(1)	
$ ho/g \cdot cm^{-3}$ $\eta/mPa \cdot s$ $v/m \cdot s^{-1}$ ϵ_r	0.862 52(8) 0.638 1318 2.374	$\begin{array}{c} 0.862\ 53^{17}\\ 0.637^{17}\\ 1312^{42} \end{array}$	0.858 31(3)	Ethylbenzene 0.858 34 ³⁴	0.854 15(2) 0.534 1276 2.319	$\begin{array}{c} 0.854 \ 16^{42} \\ 0.531^{43} \\ 1276^{42} \end{array}$	0.84	9 44(8)	
ρ/g·cm ⁻³ η/mPa·s υ/m·s ⁻¹ ε _r	0.773 85(8) 0.898 1253 1.989	$\begin{array}{c} 0.773 \ 89^{17} \\ 0.898^{17} \\ 1256.07^{30} \end{array}$	0.768 44(2)	Cyclohexane 0.768 45 ¹⁷	0.764 46(4) 0.749 1212 1.886	$\begin{array}{c} 0.764 \; 47^{44} \\ 0.7483^{45} \end{array}$	0.75	9 40(2)	0.7594 ⁴⁵
	I	√ _T /cm ³ ·mol ⁻¹	V_0 /cm ³ ·mol ⁻¹	$V_{\rm a}/{\rm cm^3 \cdot mol^{-1}}$	$L_{ m f}$ /Å	Y	S	B/cm ³	·mol ⁻¹
2-methoxyet 2-ethoxyet 2-butoxyet benzene toluene <i>o</i> -xylene <i>m</i> -xylene <i>p</i> -xylene ethylbenze cyclohexan	ethanol hanol hanol ne	79.244 97.408 131.855 89.417 108.864 121.217 123.464 123.926 123.074 108.755	63.753 78.553 108.794 71.315 86.635 100.147 101.311 101.627 100.700 86 230	T = 298.15 K 15.491 18.855 23.061 18.102 20.229 21.071 22.153 22.299 22.374 22.525	$\begin{array}{c} 0.475\\ 0.504\\ 0.496\\ 0.516\\ 0.506\\ 0.479\\ 0.499\\ 0.502\\ 0.506\\ 0.565\end{array}$	65.16 74.90 93.06 70.22 79.95 88.06 88.74 88.92 88.38 79.70	3.361 3.257 3.271 3.262 3.273 3.382 3.312 3.312 3.307 3.146	19.7 24.3 22.5 26.0 30.3 30.1 30.1 30.0 30.0 27.0	731 260 855 254 609 198 754 868 657 069
2-methoxyd 2-ethoxyetl 2-butoxyetl benzene toluene <i>o</i> -xylene <i>p</i> -xylene ethylbenze cyclohexan	ethanol hanol hanol ne e	79.801 98.194 132.836 90.518 108.037 122.377 124.671 125.215 124.330 110.092	00.200	T = 308.15 K 16.047 19.622 24.150 19.203 21.402 22.253 23.360 23.588 23.595 23.861	$\begin{array}{c} 0.493\\ 0.526\\ 0.517\\ 0.523\\ 0.535\\ 0.505\\ 0.527\\ 0.531\\ 0.535\\ 0.599\end{array}$	10.10	3.334 3.178 3.224 3.165 3.168 3.317 3.220 3.202 3.202 3.202 3.044	19.3 24.4 33.0 26.3 30.4 31.0 31.0 30.9 27.5	867 451 095 522 896 483 050 184 964 396

^{*a*} $V_{\rm T}$ = molar volume, V_0 = molar volume at absolute zero, $V_{\rm a}$ = available volume, $L_{\rm f}$ = free length, Y = surface area, S = collision factor, B = actual volume per mole.

Table 2. Densities, ρ , for Alkoxyethanols (1) + Aromatic Hydrocarbons (2) and + Cyclohexane (2) at T = (298.15 to 313.15) K

		ρ/g•c	m^{-3}				ρ/ g· α	cm^{-3}	
<i>X</i> 1	T = 298.15 K	<i>T</i> = 303.15 K	<i>T</i> = 308.15 K	<i>T</i> = 313.15 K	<i>X</i> 1	T = 298.15 K	T = 303.15 K	T = 308.15 K	T = 313.15 K
	2-Meth	oxvethanol (1) -	+ Benzene (2)			2-Meth	oxvethanol (1)	+ Toluene (2)	
0.0543	0.877 11(2)	0.871 63(9)	0.866 32(5)	0.861 18(3)	0.0586	0.866 02(5)	0.861 22(1)	0.856 54(8)	0.85174(1)
0.1499	0.883 76(2)	0.878 21(8)	0.873 02(0)	0.867 61(1)	0.1696	0.873 92(5)	0.868 96(1)	0.864 38(3)	0.859 29(4)
0.2235	0.889 28(8)	0.883 78(3)	0.878 73(9)	0.873 12(2)	0.2421	0.879 54(4)	0.874 53(9)	0.870 06(7)	0.864 75(0)
0.3508	0.899 62(7)	0.894 22(0)	0.889 54(0)	0.883 55(0)	0.3513	0.888 69(2)	0.883 68(1)	0.879 42(6)	0.873 72(5)
0.4496	0.908 25(9)	0.902 86(1)	0.898 52(8)	0.892 23(5)	0.4555	0.898 18(9)	0.893 20(4)	0.889 20(9)	0.883 12(5)
0.4961	0.912 47(9)	0.907 05(3)	0.902 89(5)	0.896 45(9)	0.4987	0.902 34(7)	0.897 37(4)	0.893 50(2)	0.887 26(0)
0.5462	$0.917\ 12(1)$	$0.911\ 64(2)$	$0.907\ 68(1)$	0.901 09(2)	0.5515	0.907 60(6)	0.902 64(8)	0.898 93(3)	0.892 50(6)
0.6455	$0.926\ 55(0)$	0.92092(1)	0.91736(7)	0.91048(9)	0.6515	0.918 10(0)	0.91316(4)	0.909 / / (/)	0.90302(7)
0.7524	0.93089(3)	0.93112(9) 0.94070(8)	0.92802(0)	0.92089(1) 0.03074(0)	0.7407	0.928 97(8)	$0.924\ 00(1)$	0.921 02(1) 0.033 $11(3)$	$0.914\ 01(6)$ 0.026 26(5)
0.0303	0.94040(4) 0.95626(0)	0.94070(8) 0.95111(1)	0.938 03(1)	0.93074(3)	0.0455	0.940.97(2) 0.954.41(9)	$0.930\ 0.9(3)$	0.93344(3) 0.94744(4)	$0.920\ 20(3)$
0.0000	9 Moth	overthanal (1)	o Vulono (2)	0.011 01(0)	0.0000	9 Motho	variathanal (1)	$= \mathbf{V}_{\mathrm{vlone}} \left(2 \right)$	0.010 20(1)
0.0517	0 877 85(5)	0 873 31(9)	0.869.04(6)	0 864 67(6)	0.0519	2-Metho0.862/10(5)	0 857 98(5)	\cap <i>III</i> -Aylene (2)	0 848 65(7)
0.0317	$0.877\ 0.0(0)$	0.87745(2)	0.80304(0) 0.87323(5)	0.86858(9)	0.1498	0.867.96(6)	0.863 28(9)	0.85888(1)	0.85365(6)
0.2491	0.88792(1)	0.88299(8)	$0.878\ 80(7)$	0.87386(6)	0.2504	0.87492(5)	0.87013(9)	$0.865\ 82(5)$	$0.860\ 30(9)$
0.3509	0.894 66(1)	0.889 79(0)	0.885 63(2)	0.880 35(2)	0.3476	0.882 70(6)	0.877 91(5)	0.873 78(3)	0.867 96(6)
0.4485	0.902 02(9)	0.897 23(0)	0.893 14(5)	0.887 49(0)	0.4520	0.892 10(5)	0.887 36(7)	0.883 47(4)	0.877 33(5)
0.4919	0.905 58(0)	0.900 80(2)	0.896 77(0)	0.890 93(2)	0.4991	0.896 68(0)	0.891 97(2)	0.888 19(1)	0.881 91(3)
0.5537	0.910 92(3)	0.906 15(1)	0.902 22(3)	0.896 11(1)	0.5538	0.902 24(8)	0.897 57(5)	0.893 92(3)	0.887 49(1)
0.6432	0.919 25(8)	0.914 44(0)	0.910 72(9)	0.904 20(7)	0.6476	0.912 44(7)	0.907 82(0)	0.904 38(3)	0.897 71(5)
0.7525	0.930 41(9)	$0.925\ 48(0)$	0.922 15(3)	0.915 16(2)	0.7504	$0.924\ 64(6)$	0.920 03(3)	$0.916\ 84(4)$	0.909 96(2)
0.8492	$0.941\ 25(8)$	$0.936\ 23(7)$	$0.933\ 36(0)$	$0.926\ 06(9)$	0.8491	0.93754(1)	$0.932\ 90(5)$	$0.930\ 02(3)$	0.92298(3)
0.9547	0.954 25(1)	$0.949\ 36(1)$	0.947 07(5)	0.939 73(5)	0.9558	0.953 14(9)	$0.948\ 47(2)$	0.946 12(7)	0.938 95(8)
	2-Metho	oxyethanol (1) +	- <i>p</i> -Xylene (2)	/>		2-Methoxy	vethanol $(1) + 1$	Ethylbenzene (2	2)
0.0528	0.859 41(0)	0.854 99(8)	0.850 64(4)	0.846 26(5)	0.0558	$0.865\ 14(7)$	0.860 77(8)	0.856 53(2)	0.851 73(7)
0.1469	0.865 14(8)	0.86067(0)	0.856 36(0)	0.85172(4)	0.1525	0.870 63(8)	$0.866\ 09(2)$	0.861 80(0)	0.856 78(7)
0.2507	0.8/2 58(5)	0.868 04(0)	0.86380(0)	0.85887(9)	0.2511	0.87735(2)	0.8/2/1(7)	0.868 48(3)	0.863 19(4)
0.3484	0.88002(2)	0.87002(3)	0.87180(9)	0.80007(0)	0.3304	0.883 12(7)	0.88040(3)	0.870 30(3)	0.87077(3)
0.4455	0.89002(4) 0.89504(8)	0.880 38(0)	0.881 33(8) 0 886 41(1)	$0.875\ 80(0)$ 0.880\ 79(1)	0.4525	$0.894\ 0.00(4)$	0.883 43(3) 0.894 13(4)	0.880 32(8)	0.87302(4) 0.88428(6)
0.5542	0.90079(9)	$0.896\ 12(3)$	$0.892\ 23(1)$	0.88645(5)	0.5522	0.90372(6)	$0.899\ 10(3)$	$0.895\ 42(4)$	0.88923(2)
0.6493	$0.911\ 61(9)$	$0.906\ 92(5)$	$0.903\ 22(0)$	$0.897\ 16(4)$	0.6499	$0.914\ 04(2)$	0.90944(1)	$0.906\ 01(4)$	0.89957(0)
0.7508	0.924 23(7)	0.919 53(8)	0.916 11(6)	0.909 74(9)	0.7500	0.925 58(7)	0.920 99(0)	0.917 85(8)	0.911 18(7)
0.8478	0.937 37(2)	0.932 67(6)	0.929 64(8)	0.922 96(9)	0.8530	0.938 68(9)	0.934 07(0)	0.931 30(7)	0.924 42(4)
0.9556	0.953 27(8)	0.948 59(0)	0.946 21(8)	0.939 16(6)	0.9546	0.953 16(2)	0.948 49(9)	0.946 21(6)	0.939 11(4)
	2-Methox	yethanol $(1) + 0$	Cyclohexane (2)			2-Etho	xyethanol (1) +	- Benzene (2)	
0.0540	0.779 60(7)	0.774 21(5)	0.770 01(0)	0.764 53(1)	0.0585	0.875 67(4)	0.870 69(3)	0.865 67(1)	0.860 78(4)
0.1506	0.791 26(1)	0.785 84(0)	0.781 46(3)	0.775 56(1)	0.1533	0.879 82(4)	0.875 37(2)	0.870 76(9)	0.865 96(8)
0.2513	0.804 98(3)	0.799 48(2)	0.795 15(2)	0.789 09(7)	0.2518	0.884 90(3)	0.880 92(2)	0.876 66(6)	0.871 86(8)
0.3532	$0.820\ 23(6)$	0.81465(8)	0.81051(2)	0.804 43(7)	0.3637	0.89124(8)	0.88765(2)	0.883 / 0(3)	0.87882(1)
0.4306	0.83001(0) 0.84361(7)	0.63040(2) 0.838.01(8)	0.020 40(0)	0.820 39(0)	0.4521	0.890 40(0)	0.895 05(4)	$0.009 \ 27(3)$ 0.802 53(3)	$0.004 \ 27(2)$ 0.887 $11(0)$
0.4333	$0.843\ 01(7)$ 0.853\ 47(8)	0.838 01(8)	0.834 21(2) 0 844 24(0)	0.828 0.00(3) 0.838 04(4)	0.5040	0.03337(3) 0.90238(2)	0.890 19(8)	0.895 41(6)	0.887 44(0) 0.890 23(0)
0.6490	0.87188(0)	0.86644(2)	0.862.98(4)	$0.856\ 55(9)$	0.6521	0.908 09(2)	$0.904\ 62(7)$	$0.901\ 17(1)$	$0.895\ 76(3)$
0.7493	$0.892\ 72(5)$	0.887 49(4)	0.884 25(8)	0.877 48(5)	0.7508	0.913 45(5)	0.90981(4)	0.90645(7)	$0.900\ 80(1)$
0.8496	0.916 39(7)	0.911 41(7)	0.908 47(5)	0.901 33(7)	0.8521	0.918 56(2)	0.914 71(0)	0.911 43(0)	0.905 49(5)
0.9529	0.945 13(3)	0.940 38(4)	0.937 97(9)	0.930 66(9)	0.9547	0.923 27(2)	0.919 26(8)	0.916 04(2)	0.909 80(7)
	2-Etho	xyethanol (1) +	Toluene (2)			2-Etho	xyethanol (1) +	- <i>o</i> -Xylene (2)	
0.0560	0.864 63(3)	0.859 92(9)	0.855 21(5)	0.850 33(0)	0.0533	0.876 92(5)	0.872 50(7)	0.868 19(8)	0.863 82(7)
0.1494	0.869 40(0)	0.864 59(8)	0.859 89(6)	0.854 77(1)	0.1508	0.879 61(3)	0.875 01(7)	0.870 75(2)	0.866 13(6)
0.2493	0.875 23(3)	0.870 35(7)	0.865 73(3)	0.860 42(5)	0.2502	0.883 34(4)	0.878 69(8)	0.874 47(7)	0.869 65(0)
0.3539	0.881 87(4)	0.877 00(1)	0.872 51(6)	0.867 07(0)	0.3516	0.887 97(5)	0.883 32(3)	0.879 14(2)	0.874 12(3)
0.4490	0.888 18(0)	0.883 40(2)	0.879 08(3)	$0.873\ 53(7)$	0.4528	$0.893\ 23(1)$	0.888 55(2)	0.884 41(0)	0.879 20(9)
0.5019	0.89174(0)	0.88705(5)	0.88283(9)	0.87724(2)	0.5042	0.89608(3)	0.89137(3)	0.887 25(2)	0.88195(8)
0.5466	0.894 90(8)	0.890.32(3) 0.807.51(5)	0.880 20(0)	0.887 86(3)	0.3330	0.898 87(3)	0.89412(3) 0.80058(3)	$0.890\ 02(8)$ 0.895 54(7)	0.884 04(3)
0.0314	0.901 83(0)	$0.037 \ 51(3)$ 0 904 14(1)	0.83301(7) 0.90044(9)	$0.887\ 80(3)$ 0 894 57(0)	0.0472	0.304 42(8) 0.910 56(4)	0.099564(8)	$0.035 \ 54(7)$ 0 901 72(4)	0.805 93(1) 0.895 94(5)
0.8514	$0.915 \ 18(1)$	0.911 32(1)	$0.907\ 84(6)$	0.90179(5)	0.8486	0.91649(1)	$0.911\ 65(2)$	0.907 91(4)	$0.901\ 91(0)$
0.9527	0.921 97(1)	0.918 08(2)	0.914 79(5)	0.908 53(5)	0.9540	0.922 61(5)	0.918 21(5)	0.914 80(5)	0.908 54(7)
	2-Etho	xvethanol (1) +	<i>m</i> -Xylene (2)			2-Etho	vvethanol (1) +	- <i>n</i> -Xylene (2)	
0.0531	0.861 88(5)	0.857 42(7)	$0.853\ 03(2)$	0.84804(3)	0.0551	0.858 94(3)	0.854 55(9)	$0.850\ 10(0)$	0.84567(5)
0.1513	0.866 18(4)	0.861 41(3)	0.856 91(6)	0.851 71(6)	0.1489	0.863 43(1)	0.859 02(3)	0.854 55(5)	0.849 89(1)
0.2482	0.871 30(5)	0.866 38(5)	0.861 95(3)	0.856 53(4)	0.2499	0.868 99(5)	0.864 55(7)	0.860 20(7)	0.855 35(5)
0.3528	0.877 62(5)	0.872 67(2)	0.868 37(0)	0.862 71(6)	0.3507	0.875 27(0)	0.870 79(6)	0.866 61(8)	0.861 60(7)
0.4512	0.884 15(5)	0.879 25(2)	0.875 04(5)	0.869 18(6)	0.4514	0.882 19(6)	0.877 68(6)	0.873 67(7)	0.868 49(7)
0.5053	0.887 93(2)	0.883 07(9)	0.878 89(8)	0.872 93(6)	0.5001	0.885 75(4)	0.881 22(9)	0.877 29(0)	0.872 01(7)
0.5473	0.890 93(8)	0.886 13(0)	0.88195(5)	0.87591(9)	0.5497	0.889 49(9)	0.884 96(2)	0.88108(2)	0.87570(7)
0.0494	0.098 43(1)	0.093 //(3)	U.009 3/(U)	U.883 38(2)	0.0526	0.057/58(4)	0.893 04(2)	0.807 24(8)	0.883.63(0)
0.7510	0.900 12(0) 0.913 62(6)	0.301 33(1)	$0.037 \ 30(4)$ 0.905 14(4)	0.898 78(7)	0.7515	0.903 38(0)	0.301 00(3)	0.037 54(7) 0.905 56(1)	0.899 47(0)
0.9554	0.921 77(7)	0.917 63(6)	$0.914\ 01(8)$	$0.907\ 64(1)$	0.9549	0.921 84(7)	0.917 67(9)	0.914 27(8)	0.907 94(8)
				· · · · · · · · · · · · · · · · · · ·					

Table 2.	(Continued)
----------	-------------

		ρ/g·c	m^{-3}				ρ/g·o	cm^{-3}	
<i>X</i> ₁	<i>T</i> = 298.15 K	<i>T</i> = 303.15 K	<i>T</i> = 308.15 K	<i>T</i> = 313.15 K	<i>X</i> 1	<i>T</i> = 298.15 K	<i>T</i> = 303.15 K	<i>T</i> = 308.15 K	T = 313.15 K
	2-Ethoxy	ethanol (1) + E	thylbenzene (2)			2-Ethoxy	vethanol $(1) + 0$	Cyclohexane (2)	
0.0573	0.864 51(6)	0.860 19(2)	0.855 98(5)	0.851 18(3)	0.0542	0.779 45(6)	0.773 87(7)	0.769 63(2)	0.764 48(3)
0.1487	0.868 36(6)	0.863 91(3)	0.859 68(4)	0.854 70(5)	0.1507	0.790 32(8)	0.784 68(7)	0.780 34(1)	0.775 04(0)
0.2498	0.873 45(9)	0.868 92(6)	0.864 73(3)	0.859 54(4)	0.2541	0.803 24(7)	0.797 74(6)	0.793 57(0)	0.788 10(9)
0.3527	0.879 37(9)	0.874 82(7)	0.870 72(4)	0.865 32(0)	0.3508	0.816 47(9)	0.811 19(4)	0.807 22(2)	0.801 61(6)
0.4489	0.885 44(6)	0.880 92(8)	0.876 94(6)	0.871 34(9)	0.4520	0.831 44(6)	0.826 39(3)	0.822 52(5)	0.816 77(3)
0.4998	0.888 82(2)	0.884 34(0)	0.880 43(2)	0.874 73(9)	0.5000	0.838 91(6)	0.833 95(8)	0.830 07(5)	0.824 25(7)
0.5485	0.892 14(2)	0.887 70(3)	0.883 87(0)	0.878 09(1)	0.5497	0.846 88(1)	0.842 00(6)	0.838 06(1)	0.832 17(7)
0.6501	0.899 29(3)	0.894 96(5)	0.891 29(6)	0.885 35(6)	0.6534	$0.864\ 16(4)$	0.859 41(4)	0.855 21(9)	0.849 20(3)
0.7484	$0.906\ 42(4)$	0.902 21(6)	0.898 70(5)	0.892 62(9)	0.7527	0.881 37(9)	0.876 70(9)	0.872 24(4)	0.866 11(2)
0.8508	0.913 99(8)	0.909 90(2)	0.906 53(8)	$0.900\ 34(1)$	0.8492	0.898 48(2)	$0.893\ 92(3)$	0.889 41(5)	0.883 18(0)
0.9547	0.921 78(2)	0.917 75(4)	0.914 50(8)	0.908 19(1)	0.9552	0.917 32(9)	0.913 07(1)	0.909 21(1)	0.902 87(7)
	2-Buto	xyethanol (1) +	- Benzene (2)			2-Buto	oxyethanol (1) -	+ Toluene (2)	
0.0553	0.874 30(5)	0.869 03(8)	0.863 89(8)	0.858 82(1)	0.0550	0.863 84(6)	0.859 17(3)	0.854 65(1)	0.849 76(8)
0.1496	0.876 28(2)	0.871 10(7)	0.866 19(2)	0.860 98(6)	0.1509	0.867 24(8)	0.862 55(5)	0.858 08(1)	0.852 99(5)
0.2488	0.879 00(8)	0.873 93(1)	0.869 18(5)	0.863 87(4)	0.2513	0.871 21(9)	0.866 52(5)	0.861 96(0)	0.856 75(6)
0.3504	0.882 07(4)	0.877 10(4)	0.872 51(4)	0.867 12(7)	0.3489	0.875 19(9)	0.870 52(3)	$0.865\ 88(4)$	$0.860\ 60(5)$
0.4555	0.885 22(0)	0.880 36(6)	0.875 95(6)	0.870 52(2)	0.4511	0.879 27(0)	$0.874\ 63(4)$	0.870 03(4)	$0.864\ 68(1)$
0.4995	0.886 47(3)	0.881 67(0)	0.877 34(6)	0.871 90(1)	0.5015	0.881 19(2)	0.876 58(3)	0.872 06(1)	0.866 66(8)
0.5504	$0.887\ 85(4)$	0.883 11(0)	0.878 89(6)	0.873 44(1)	0.5525	0.883 06(2)	0.878 48(5)	0.874 08(2)	$0.868\ 64(6)$
0.6482	0.890 26(2)	$0.885\ 63(5)$	0.881 65(5)	0.876 19(3)	0.6512	$0.886\ 44(1)$	0.881 93(6)	0.877 86(3)	0.872 33(7)
0.7535	0.892 46(2)	0.887 96(2)	0.884 26(1)	0.878 79(7)	0.7494	0.889 48(6)	0.885 06(1)	0.881 39(1)	0.875 78(7)
0.8483	0.894 11(1)	0.889 72(2)	0.886 27(2)	$0.880\ 80(4)$	0.8498	0.892 31(7)	0.887 97(8)	0.884 68(9)	$0.879\ 04(7)$
0.9556	0.895 67(0)	0.891 40(1)	0.888 20(2)	0.882 71(1)	0.9541	0.895 06(2)	0.890 80(7)	0.887 71(9)	0.882 13(6)
	2-Buto	xyethanol (1) +	- <i>o</i> -Xylene (2)			2-Buto	xyethanol (1) +	- <i>m</i> -Xylene (2)	
0.0549	0.875 83(5)	0.871 65(1)	0.867 29(9)	0.862 92(4)	0.0560	$0.861\ 44(5)$	0.857 06(3)	0.852 68(1)	0.847 76(8)
0.1475	0.876 80(6)	0.872 55(7)	0.868 23(9)	0.863 54(7)	0.1520	0.864 52(2)	0.859 92(4)	0.855 46(7)	0.850 37(8)
0.2508	0.878 94(6)	0.874 52(2)	0.870 30(8)	0.865 35(1)	0.2496	0.868 18(9)	0.863 47(2)	0.859 11(0)	0.853 77(2)
0.3485	0.881 54(2)	0.876 95(1)	0.872 86(4)	0.867 70(6)	0.3506	0.872 30(4)	0.867 54(8)	0.863 37(7)	0.857 79(7)
0.4527	0.884 51(1)	0.879 80(9)	0.875 86(1)	0.870 54(1)	0.4512	0.876 51(3)	0.871 78(5)	0.867 82(9)	0.862 08(3)
0.5000	0.885 84(0)	0.881 12(1)	0.877 23(4)	0.871 85(8)	0.5022	0.878 63(4)	0.873 93(8)	0.870 08(6)	0.864 29(7)
0.5489	0.887 16(9)	0.882 45(8)	0.878 63(0)	0.873 20(6)	0.5529	0.880 70(9)	0.876 05(5)	0.872 29(8)	0.866 49(3)
0.6483	$0.889\ 66(1)$	0.885 03(7)	0.881 32(5)	0.875 83(4)	0.6487	0.884 49(2)	0.879 93(4)	0.876 32(7)	0.870 56(6)
0.7518	0.891 90(6)	0.887 44(7)	0.883 85(6)	0.878 33(3)	0.7505	0.888 25(5)	0.883 81(0)	0.880 32(6)	0.874 68(4)
0.8493	0.893 72(0)	0.889 42(6)	0.885 97(4)	0.880 44(6)	0.8511	0.891 68(0)	0.88734(2)	0.883 96(8)	0.878 45(6)
0.9524	0.895 45(2)	0.891 25(0)	0.888 00(5)	0.882 48(8)	0.9549	0.894 92(0)	0.890 67(0)	0.887 45(3)	0.881 98(6)
	2-Buto	xyethanol (1) +	- <i>p</i> -Xylene (2)			2-Butoxy	ethanol (1) + E	Ethylbenzene (2))
0.0541	0.858 20(8)	0.853 81(6)	0.849 44(4)	0.845 15(1)	0.0546	0.863 76(5)	0.859 41(8)	0.855 27(3)	0.850 44(5)
0.1518	0.861 90(7)	0.857 46(7)	0.853 12(2)	0.848 55(1)	0.1505	0.866 73(9)	0.862 26(0)	0.858 07(9)	0.853 05(0)
0.2496	0.865 97(9)	0.861 49(6)	0.857 21(4)	0.852 27(0)	0.2513	0.870 23(5)	0.865 73(1)	0.861 49(5)	0.856 31(9)
0.3502	0.870 43(0)	0.865 91(9)	0.861 73(0)	0.856 40(4)	0.3501	0.873 92(7)	0.869 44(7)	0.865 19(8)	0.859 92(7)
0.4510	0.874 96(0)	0.870 44(7)	0.866 37(5)	0.860 74(4)	0.4528	0.877 85(6)	0.873 40(9)	0.869 23(1)	0.863 90(5)
0.5028	0.877 26(3)	0.872 76(1)	0.868 75(7)	0.863 01(5)	0.4982	0.879 58(3)	0.875 14(7)	0.871 03(1)	$0.865\ 69(2)$
0.5533	0.879 47(1)	0.874 98(6)	0.871 05(3)	0.865 23(7)	0.5500	0.881 52(6)	0.877 09(8)	0.873 07(6)	0.867 72(8)
0.6489	0.883 50(6)	0.879 07(1)	0.875 28(5)	$0.869\ 42(1)$	0.6497	0.885 14(7)	0.880 72(0)	0.876 93(6)	0.871 58(3)
0.7493	0.887 49(0)	0.883 12(5)	0.879 50(7)	0.873 71(0)	0.7511	0.888 62(3)	0.884 19(1)	0.880 68(8)	0.875 33(1)
0.8519	0.891 26(9)	0.886 97(8)	0.883 55(0)	0.877 89(2)	0.8507	0.891 81(5)	0.887 40(6)	0.884 15(4)	0.878 77(2)
0.9561	0.894 82(2)	0.890 58(8)	0.887 37(4)	0.881 84(4)	0.9614	0.895 13(4)	0.890 83(6)	0.887 73(0)	0.882 26(8)
	2-Butoxy	we than $(1) + 0$	Cyclohexane (2)						
0.0557	0.780 53(0)	0.774 84(4)	0.771 17(8)	0.765 44(0)					
0.1501	0.792 14(6)	0.786 38(5)	0.782 85(7)	0.776 71(4)					
0.2504	0.804 78(0)	0.799 25(3)	0.795 54(6)	0.789 54(2)					
0.3543	0.818 03(1)	0.812 87(3)	0.808 84(8)	0.803 16(7)					
0.4488	0.830 10(3)	0.825 26(1)	0.820 97(5)	0.815 49(1)					
0.5025	0.836 93(2)	0.832 23(1)	0.827 84(6)	0.822 38(1)					
0.5493	0.842 84(7)	0.838 24(1)	0.833 80(8)	0.828 29(8)					
0.6485	0.855 22(8)	0.850 72(5)	0.846 33(5)	0.840 55(8)					

temperature has been found to be ± 0.003 and ± 0.002 °C for a given session and two different sessions, respectively. The accuracy in the temperature during the measurements, however, is ± 0.01 °C because Pt 100 measuring sensors were used. The instrument was calibrated with air and with four times distilled and freshly degassed water at T = (293.15, 313.15, and 333.15) K during every session. The repeatabilities in the densities for the distilled water and freshly distilled pure liquids and prepared binary mixtures have been found to be better than 3×10^{-6} g·cm⁻³. We have estimated the accuracy in densities of the seven pure

0.863 02(4)

0.875 01(9)

0.887 00(3)

0.858 87(2)

0.871 26(1)

0.883 70(9)

0.852 71(5)

0.864 88(1)

0.877 70(9)

0.7494

0.8511

0.9556

0.867 52(4)

0.879 52(7)

0.891 37(8)

liquids used in the study by comparing our data at different temperatures with the literature values, as listed in Table 1. This comparison gave a mean absolute deviation of 2.9 \times 10⁻⁵ g·cm⁻³. Hence, the precision and accuracies of the densities reported in the present work are 3 \times 10⁻⁶ and 2.9 \times 10⁻⁵ g·cm⁻³, respectively. The viscosities, η , of pure liquids and liquid mixtures were determined using a Ubbelohde suspended-level viscometer. The viscometer was suspended in a thermostated water bath maintained to \pm 0.01 °C. Four sets of readings for the flow times were taken using a Racer stopwatch that can register time to

Table 3. Parameters of Eq 2 for the Mathematical Representation of $V_m^E/cm^3 \cdot mol^{-1}$ for Alkoxyethanols (1) + Aromatic Hydrocarbons (2) and + Cyclohexane (2) at T = (298.15 to 313.15) K

<i>T</i> /K	a_0	a_1	a_2	$\sigma/cm^3 \cdot mol^{-1}$	a_0	a_1	a_2	$\sigma/cm^3 \cdot mol^{-1}$	a_0	a_1	a_2	$\sigma/cm^3 \cdot mol^{-1}$	
	Meth	oxvethan	(1) + B	enzene (2)	Meth	oxvethan	ol (1) + T	oluene (2)	Me	thoxyethan	ol (1) + a	Xvlene (2)	
298.15	0.548	-1.083	-0.187	0.001	0.608	-0.526	0.041	0.001	1.333	-1.192	0.406	0.001	
303.15	0.697	-0.829	0.381	0.001	0.738	-0.621	0.191	0.001	1.511	-1.401	1.000	0.001	
308.15	0.809	-0.970	0.439	0.001	0.844	-0.719	0.223	0.001	1.771	-1.326	0.857	0.001	
313.15	0.994	-0.837	0.526	0.001	1.079	-0.525	0.184	0.001	2.034	-1.049	1.097	0.001	
	Meth	oxyethan	ol (1) + m	-Xylene (2)	Meth	oxyethand	p(1) + p(1)	-Xylene (2)	Methoxyethanol (1) + Ethylbenzene (2)				
298.15	1.098	-1.178	0.861	0.001	0.899	-1.269	0.201	0.001	1.007	-1.024	0.797	0.001	
303.15	1.252	-1.483	1.090	0.001	0.982	-1.301	0.190	0.001	1.125	-1.232	0.914	0.001	
308.15	1.424	-1.618	1.453	0.001	1.199	-1.193	0.264	0.001	1.328	-1.363	1.067	0.001	
313.15	1.692	-1.541	1.362	0.001	1.349	-1.221	0.251	0.001	1.533	-1.302	0.946	0.001	
	Methox	vyethanol	(1) + Cyc	clohexane (2)	Ethe	oxyethano	l(1) + Be	enzene (2)	Et	hoxyethan	ol $(1) + T_{0}$	oluene (2)	
298.15	3.576	0.902	2.249	0.001	0.504	-1.573	0.454	0.001	0.289	-1.082	0.766	0.001	
303.15	3.798	0.912	2.027	0.001	-0.030	-1.423	0.706	0.001	0.440	-1.417	0.462	0.001	
308.15	4.060	0.715	2.517	0.001	-0.280	-1.347	0.697	0.001	0.538	-1.559	0.492	0.001	
313.15	4.213	0.461	3.318	0.001	-0.542	-1.272	0.681	0.001	0.603	-1.751	0.549	0.001	
	Etho	oxyethand	ol(1) + o-2	Xylene (2)	Etho	xyethanol	(1) + m	Xylene (2)	Et	hoxyethand	ol (1) + p -2	Xylene (2)	
298.15	0.997	-2.001	0.390	0.001	0.596	-1.677	0.468	0.001	0.525	-1.765	-0.295	0.001	
303.15	1.287	-1.836	0.936	0.001	0.968	-1.964	0.650	0.001	0.677	-1.650	-0.242	0.001	
308.15	1.433	-1.706	1.022	0.001	1.172	-1.838	1.336	0.001	0.713	-1.718	0.131	0.001	
313.15	1.519	-1.810	1.091	0.001	1.411	-1.802	1.298	0.001	0.788	-1.783	0.368	0.001	
	Ethoxy	vethanol (1) + Ethy	lbenzene (2)	Ethoxy	yethanol (1) + Cycl	ohexane (2)	Butoxyethanol (1) + Benzene (2)				
298.15	0.683	-1.470	0.424	0.001	3.170	-2.211	-0.379	0.001	0.305	-1.463	0.778	0.001	
303.15	0.862	-1.667	0.394	0.001	3.255	-2.371	0.167	0.001	0.373	-1.495	0.768	0.001	
308.15	0.946	-1.839	0.405	0.001	3.388	-2.029	1.466	0.001	0.527	-1.458	0.596	0.001	
313.15	1.096	-1.836	0.354	0.001	3.511	-2.051	1.483	0.001	0.611	-1.533	0.576	0.001	
	But	oxyethan	ol $(1) + T_{0}$	oluene (2)	Buto	oxyethano	l(1) + o-2	Xylene (2)	Bu	toxyethano	l(1) + m	Xylene (2)	
298.15	-0.069	-1.031	0.854	0.001	0.388	-2.116	1.487	0.001	0.102	1.487	0.667	0.001	
303.15	0.032	-1.077	0.840	0.001	0.678	-2.096	1.026	0.001	0.387	-1.719	0.691	0.001	
308.15	0.412	-1.161	0.091	0.001	0.789	-2.124	1.219	0.001	0.506	-1.993	1.047	0.001	
313.15	0.558	-1.155	0.348	0.001	1.089	-2.202	1.210	0.001	0.862	-2.021	0.588	0.001	
	Buto	oxyethand	ol (1) + p -2	Xylene (2)	Butoxy	ethanol (1	l) + Ethy	lbenzene (2)	Buto	xyethanol	(1) + Cycl	ohexane (2)	
298.15	-0.055	-1.333	0.635	0.001	0.183	-1.197	0.605	0.001	2.481	-1.553	0.191	0.001	
303.15	0.064	-1.385	0.555	0.001	0.313	-1.261	0.868	0.001	2.436	-1.906	1.056	0.001	
308.15	0.225	-1.431	0.586	0.001	0.599	-1.442	0.486	0.001	2.944	-1.232	0.306	0.001	
313.15	0.746	-1.269	0.098	0.001	0.740	-1.626	0.447	0.001	3.067	-1.295	2.436	0.001	

Table 4. Comparison of Excess Molar Volumes at Equimolar Composition $(V_m^E)_{x=0.5}$ with Literature Values forAlkoxyethanols + Aromatic Hydrocarbons and + Cyclohexane

				$(V_{\rm m}^{\rm E})_{x=0.5}/{\rm cm}$	n³∙mol ^{−1}			
	T = 298	.15 K	T = 303	.15 K	T = 308.1	5 K	T = 313	.15 K
	present study	lit.	present study	lit.	present study	lit.	present study	lit.
methoxyethanol +								
benzene	0.137		0.174	0.174^{15}	0.202		0.249	
toluene	0.152	0.1509^{46}	0.185	0.185^{15}	0.211		0.270	
o-xylene	0.333		0.378		0.443		0.509	
<i>m</i> -xylene	0.275		0.313		0.356		0.423	
<i>p</i> -xylene	0.225		0.246		0.300		0.337	
ethylbenzene	0.252		0.281		0.332		0.383	
cyclohexane	0.894	0.9099^{19}	0.950	0.9510 ¹⁹	1.015		1.053	
ethoxyethanol +								
benzene	0.126		-0.008	-0.0073^{14}	-0.070		-0.136	-0.1356^{14}
toluene	0.082	0.0823^{46}	0.110		0.135		0.151	
o-xylene	0.249		0.322		0.358		0.380	
<i>m</i> -xylene	0.149		0.242		0.293		0.353	
<i>p</i> -xylene	0.131		0.170		0.178		0.197	
ethylbenzene	0.171		0.216		0.237		0.274	
cyclohexane	0.793	0.795^{12}	0.814	0.815^{12}	0.847	0.844^{12}	0.878	0.878^{12}
butoxyethanol +								
benzene	0.076		0.093		0.132		0.153	
toluene	-0.017	-0.0056^{46}	0.008		0.103		0.140	
<i>o</i> -xylene	0.097		0.170		0.197		0.272	
<i>m</i> -xylene	0.026		0.097		0.127		0.216	
<i>p</i> -xylene	-0.014		0.016		0.056		0.187	
ethylbenzene	0.046		0.078		0.150		0.185	
cyclohexane	0.620		0.609		0.726		0.767	

 ± 0.1 s, and the arithmetic mean was taken for the calculation of the viscosity. The estimated accuracy and

precision in viscosity measurements were found to be ± 0.002 and ± 0.001 mPa·s, respectively. The speeds of

sound, v, were measured using an ultrasonic interferometer (Mittal Enterprises, New Delhi, India) operating at a fixed frequency of 2 MHz. The measured speeds of sound have a precision of $\pm 0.8 \text{ m} \cdot \text{s}^{-1}$ and an accuracy better than $\pm 1.9 \text{ m} \cdot \text{s}^{-1}$. The relative permittivities of the individual pure components and binary mixtures were calculated from the capacitance measurements with an universal dielectrometer, type OH-301 of Radelkis, Hungary. The procedure used in the calibration of dielectric cells was the same as that described in detail elsewhere.¹⁸ The measured relative permittivities have an estimated precision and accuracy of ± 0.001 and ± 0.004 , respectively. The desired temperatures accurate to ± 0.01 °C during the v and $\epsilon_{\rm r}$ measurements were maintained using an INSREF, India, circulator (model 020A).

Results and Discussion

Densities, ρ , and Excess Molar Volumes, $V_{\rm m}^{\rm E}$. The experimental data on ρ at T = (298.15, 303.15, 308.15, and 313.15) K for the 21 mixtures of methoxyethanol, ethoxyethanol, and butoxyethanol + benzene, + toluene, + ρ -xylene, + m-xylene, + p-xylene, + ethylbenzene, and + cyclohexane are listed in Table 2. The $V_{\rm m}^{\rm E}$ values were calculated using the relation

$$V_{\rm m}^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1} = \frac{x_1 M_1 + x_2 M_2}{\rho_{12}} - \left\{ \frac{x_1 M_1}{\rho_1} + \frac{x_2 M_2}{\rho_2} \right\}$$
(1)

The compositional variation of $V_{\rm m}^{\rm E}$ was mathematically represented through the equation of the type

$$A^{\rm E} = x_1 (1 - x_1) \sum_{i=0}^{j=n} a_i (2x_1 - 1)^i$$
 (2)

where $A^{\text{E}} = V_{\text{m}}^{\text{E}}$ and a_i are the fitting coefficients and x_1 is the alkoxyethanol mole fraction. The values of a_i were estimated by a least-squares method using multiple regression analysis. The summary of a_i and σ , the standard deviations between experimental and fitted V_m^E values, is given in Table 3. The graphical variation of V_m^E as a function of mole fraction of the alkoxyethanols for the binary systems of methoxyethanol, ethoxyethanol, and butoxyethanol + aromatic hydrocarbons and + cyclohexane at T = 298.15 K is shown in Figure 1. The $V_{\rm m}^{\rm E}$ profiles of alkoxyethanols + aromatic hydrocarbons are characterized by initial positive values followed by small but negative values in the alkoxyethanol rich compositions. The binary mixtures containing cyclohexane as one of the components have, however, been characterized by large and positive values across the mole composition. The comparison of $V_{\rm m}^{\rm E}$ values of the mixtures containing different alkoxyethanols + aromatic hydrocarbons and + cyclohexane showed that the positive magnitudes decreased on one hand and while the negative magnitudes increased on the other from methoxyethanol to butoxyethanol containing mixtures. The rise in the temperature from 298.15 to 313.15 K has always increased the overall magnitude of $V_{\rm m}^{\rm E}$ values with an exception in ethoxyethanol + benzene mixtures. A comparison of our calculated equimolar $V_{\rm m}^{\rm E}$ values with the literature data is presented in Table 4, and we noticed a close agreement of our data with the literature values.

The recent detailed ab initio calculations and a few matrix isolation infrared spectroscopy measurements have revealed that alkoxyethanol molecules in their pure monomeric (gas phase) state prefer the formation of five membered rings through $CH \cdot \cdot O$ and/or $O \cdot \cdot H - O$ con-

 $V_{\rm m}^{\rm E} / ({\rm cm}^{3.} {\rm mol}^{-1})$

Figure 1. Variation of excess molar volumes, V_m^E , with alkoxyethanol mole fraction for the binary mixtures of methoxyethanol (a), ethoxyethanol (b), and butoxyethanol (c) + aromatic hydrocarbons and + cyclohexane at 298.15 K: •, benzene; \blacktriangle , toluene; \blacksquare , *o*-xylene; •, *m*-xylene; ×, *p*-xylene; *, ethylbenzene; \blacktriangledown , cyclohexene. Solid lines are fitted values calculated using coefficients from Table 3 and eq 2.

tacts between the methylene hydrogen and etheric oxygens or/and between the etheric oxygen and the hydrogen of the hydroxyl group of the same molecule.^{8–11,19} The binary systems of 1-alcohols + cyclohexane²⁰ exhibited large and positive volume expansions, and it has been reported that the heteroassociated structures of 1-alcohols were ruptured in the presence of cyclohexane. The molecular skeletons of methoxy-, ethoxy-, and butoxyethanols can be made structurally equivalent to 1-butanol, 1-pentanol, and 1-heptanol

Figure 2. Variation of deviation in speeds of found, δv , with alkoxyethanol mole fraction for the binary mixtures of methoxyethanol (a), ethoxyethanol (b), and butoxyethanol (c) + aromatic hydrocarbons and + cyclohexane at 298.15 K. (The symbols are the same as those in Figure 1.) Solid lines are fitted values calculated using coefficients from Table 6 and eq 2.

0.4

0.5

 x_1

0.6 0.7 0.8 0.9

 $0.1 \ \ 0.2 \ \ 0.3$

-50.0

-60.0

-70.0

0

(the difference being the presence of an -O- group in the place of $-CH_2-$). Our equimolar V_m^E values of 0.950, 0.814, and 0.609 for cyclohexane + methoxy-, + ethoxy-, and + butoxyethanols at T = 303.15 K are interestingly found to be smaller than 1.5355, 1.4668, and 1.3912 for cyclohexane + 1-butanol, + pentanol, and + 1-heptanol mixtures at the same temperature.²¹ Thus, we attribute the observed positive V_m^E values of alkoxyethanols + cyclohexane mixtures to the disruptions in the self-associated structures of the former. The smaller V_m^E values for

Figure 3. Variation of excess isentropic compressibilities, $\kappa_{\rm s}^{\rm S}$, with alkoxyethanol mole fraction for the binary mixtures of methoxyethanol (a), ethoxyethanol (b), and butoxyethanol (c) + aromatic hydrocarbons and + cyclohexane at 298.15 K. (The symbols are the same as those in Figure 1.) Solid lines are fitted values calculated using coefficients from Table 6 and eq 2.

alkoxyethanols + cyclohexane vis-à-vis those of 1-alcohols + cyclohexane indicate that the self-associate ring structures in the alkoxyethanols resist the structure disruption. The observed less positive or even negative $V_{\rm m}^{\rm E}$ values for the alkoxyethanols + aromatic hydrocarbons in general indicate that, besides structure disruptions, weak interactions between the π electrons of the aromatic ring system and the etheric oxygen as well as the –OH group of the respective alkoxyethanols also exist. The presence of one

Table 5. Dynamic Viscosities, η , Speeds of Sound, v , and Relative Permittivities, ϵ_r , for Alkoxyethanols (1) + Aromatic
Hydrocarbons (2) and + Cyclohexane (2) at $T = (298.15 \text{ and } 308.15) \text{ K}$	

	η/n	nPa∙s	v/m	$\cdot s^{-1}$	e	r		η/n	nPa∙s	v/m	$\cdot s^{-1}$	e	r
<i>X</i> 1	298.15 K	308.15 K	298.15 K	308.15 K	298.15 K	308.15 K	<i>X</i> 1	298.15 K	K 308.15 K	298.15 K	308.15 K	298.15 K	308.15 K
	2	-Methoxye	thanol (1)	+ Benzen	e (2)			:	2-Methoxye	ethanol (1)	+ Toluen	e (2)	
0.0543	0.624	0.541	1294	1258	2.652	2.674	0.0586	0.571	0.512	1300	1261	2.824	2.735
0.1499	0.669	0.571	1290	1256	3.308	3.462	0.1696	0.617	0.545	1296	1260	3.570	3.524
0.2235	0.708	0.598	1289	1256	3.886	4.153	0.2421	0.654	0.571	1296	1260	4.136	4.164
0.3508	0.788	0.654	1291	1258	5.216	5.604	0.3513	0.719	0.618	1298	1261	5.241	5.356
0.4496	0.862	0.707	1295	1263	0.614	6.983	0.4555	0.796	0.674	1302	1265	0.058	6.766 7.490
0.4901	0.902	0.735	1297	1200	7.389	7.703	0.4987	0.833	0.700	1304	1200	7.300	7.420
0.5402	0.947	0.700	1300	1209	0.290	0.004	0.5515	0.002	0.730	1300	1209	0.209	0.200
0.0455	1.045	0.042	1300	1289	12 584	12 265	0.0313	1 1 1 1 8	0.014	1312	1287	12 338	11 858
0.8509	1.100	1 043	1323	1302	14 633	14 028	0.8495	1 279	1 021	1325	1300	14 466	13 736
0.9558	1.505	1.177	1334	1319	16.448	15.661	0.9558	1.490	1.170	1334	1317	16.392	15.556
	2	-Methoxye	thanol (1)	+ o-Xylen	e (2)			2	-Methoxye	thanol (1)	+ <i>m</i> -Xyler	ie (2)	
0.0517	0.769	0.666	1342	1314	2.864	2.821	0.0519	0.598	0.513	1317	1279	2.702	2.269
0.1491	0.795	0.686	1337	1303	3.544	3.466	0.1498	0.635	0.543	1312	1275	3.366	3.197
0.2491	0.830	0.714	1333	1298	4.393	4.276	0.2504	0.681	0.580	1309	1273	4.183	3.910
0.3509	0.877	0.749	1330	1295	5.440	5.262	0.3476	0.737	0.624	1309	1273	5.179	4.852
0.4485	0.934	0.790	1328	1295	6.633	6.373	0.4520	0.810	0.680	1310	1275	6.526	6.219
0.4919	0.963	0.811	1328	1295	7.227	6.922	0.4991	0.848	0.709	1311	1277	7.233	6.960
0.5537	1.009	0.845	1328	1295	8.140	7.764	0.5538	0.897	0.746	1312	12/9	8.120	7.910
0.6432	1.088	0.901	1329	1297	9.606	9.114	0.6476	0.996	0.819	1316	1285	9.827	9.721
0.7323	1.200	0.985	1331	1301	11.010	10.980	0.7304	1.127	0.915	1321	1293	12.050	11.832
0.0492	1.554	1.070	1333	1300	15.090	15 150	0.0491	1.202	1.020	1327	1304	16 159	15.652
0.3347	1.500	1.10J	1007	1520	10.044	15.150	0.3338	1.451	1.17% fothormoth	1000	I J & U	10.152	15.005
0.0528	0 626		1206	$\pm p$ -Aylen	e (2) 2 625	9 191	0.0558	2-IV 0.650	0 5 4 9	1217	Euryibenz	ene (2) 9 721	2 610
0.0528	0.020	0.549	1300	1273	2.025	2.424	0.0558	0.030	0.548	1317	1273	2 3 3 1 5 1	2.010
0.2507	0.696	0.601	1302	1268	4 034	3 881	0.2511	0.070	0.612	1318	1269	3 988	3 966
0.3484	0.746	0.639	1302	1269	4.989	4.908	0.3504	0.766	0.655	1321	1269	4.902	4.977
0.4499	0.812	0.688	1304	1270	6.267	6.240	0.4525	0.831	0.708	1324	1271	6.168	6.292
0.4999	0.850	0.716	1305	1272	7.012	6.997	0.5021	0.869	0.738	1326	1273	6.914	7.030
0.5542	0.897	0.750	1306	1273	7.909	7.886	0.5522	0.911	0.771	1328	1274	7.750	7.839
0.6493	0.994	0.820	1310	1278	9.671	9.588	0.6499	1.008	0.844	1331	1279	9.602	9.568
0.7508	1.122	0.913	1315	1285	11.766	11.547	0.7500	1.131	0.933	1335	1286	11.726	11.491
0.8478	1.274	1.021	1323	1297	13.868	13.458	0.8530	1.291	1.043	1338	1298	13.833	13.520
0.9556	1.488	1.170	1333	1317	16.146	15.469	0.9546	1.488	1.175	1339	1317	16.153	15.436
	2-N	lethoxyeth	anol (1) $+$	Cyclohexa	ane (2)				2-Ethoxyet	hanol (1) -	+ Benzene	(2)	
0.0540	0.905	0.750	1249	1205	2.283	2.175	0.0585	0.632	0.548	1292	1258	2.698	2.546
0.1506	0.923	0.757	1240	1194	2.785	2.800	0.1533	0.686	0.587	1285	1255	3.362	3.173
0.2513	0.950	0.773	1237	1195	3.664	3.819	0.2518	0.752	0.635	1281	1252	4.115	4.011
0.3532	0.989	0.797	1234	1196	4.679	4.965	0.3637	0.841	0.700	1282	1250	5.148	5.168
0.4508	1.037	0.829	1230	1200	5.900	6.219	0.4521	0.923	0.760	1285	1250	0.132	0.200
0.4900	1.002	0.847	1239	1203	0.043	0.844	0.5048	0.979	0.800	1287	1250	0.789	0.002
0.5515	1.050	0.873	1244	1207	0 166	0.215	0.5525	1.034	0.839	1203	1251	8 8 17	7.407 8.756
0.0430	1.172	0.920	1274	1236	11 196	10 967	0.0521	1 317	1 039	1299	1257	10 305	9 983
0.8496	1.201	1 079	1295	1250	13 480	12.818	0.8521	1.505	1 1 7 0	1301	1261	11 713	11 105
0.9529	1.518	1.185	1325	1303	15.872	15.118	0.9547	1.734	1.328	1300	1265	12.862	11.931
		2-Ethoxyet	hanol (1)	+ Toluene	(2)				2-Ethoxyet	hanol (1) -	+ <i>o</i> -Xylene	(2)	
0.0560	0.576	0.517	1299	1258	2.840	2.820	0.0533	0.777	0.674	1343	1315	2.862	2.826
0.1494	0.627	0.554	1294	1255	3.553	3.556	0.1508	0.817	0.708	1336	1304	3.468	3.378
0.2493	0.690	0.601	1292	1253	4.374	4.404	0.2502	0.867	0.750	1330	1294	4.187	3.981
0.3539	0.771	0.660	1292	1254	5.358	5.373	0.3516	0.931	0.800	1324	1286	5.082	4.774
0.4490	0.859	0.723	1294	1256	6.390	6.344	0.4528	1.009	0.858	1320	1281	6.154	5.672
0.5019	0.915	0.763	1295	1257	7.019	6.918	0.5042	1.056	0.892	1317	1278	6.765	6.228
0.5488	0.969	0.802	1296	1258	7.609	7.445	0.5530	1.104	0.926	1316	1277	7.383	6.703
0.6514	1.107	0.899	1299	1260	8.972	8.637	0.6472	1.211	1.001	1312	1274	8.549	7.914
0.7465	1.201	1.007	1301	1262	10.275	9.751	0.7494	1.333	1.096	1308	1272	10.100	9.224
0.8514	1.408	1.149	1301	1203	11.000	10.920	0.8480	1.520	1.204	1304	12/0	11.4/1	10.505
0.9527	1.710		1300	1205	12.795	11.050	0.9340	1.759	1.540	1300	1200	12.750	11.734
0.0531	809.0	C-Etnoxyetl	nanoi (1) + 1319	- <i>m</i> -xylene 1970	e (2) 2 701	2 602	0.0551	0 639	2-Etnoxyet	- (1) Ional (1) - 1306	r <i>p</i> -xylen€	2 500	2 570
0.0551	0.000	0.521	1910	1972	2 225	2 205	0.0001	0.032	0.555	1300	1268	2.500 2.195	2.370 2.911
0.2482	0 797	0.618	1306	1268	4 040	3 904	0.2499	0 725	0.625	1297	1258	3 781	3 950
0.3528	0.809	0.682	1301	1265	4.967	4 795	0.3507	0.792	0.674	1294	1256	4.610	4,730
0.4512	0.900	0.752	1299	1265	6.027	5.768	0.4514	0.875	0.735	1293	1257	5.656	5.646
0.5053	0.957	0.795	1299	1265	6.686	6.356	0.5001	0.922	0.769	1294	1258	6.245	6.146
0.5473	1.006	0.831	1300	1266	7.233	6.834	0.5497	0.975	0.808	1295	1259	6.894	6.695
0.6494	1.140	0.928	1302	1268	8.658	8.064	0.6526	1.106	0.900	1298	1261	8.373	7.944
0.7510	1.300	1.040	1305	1270	10.143	9.371	0.7513	1.262	1.010	1302	1263	9.889	9.241
0.8492	1.487	1.168	1306	1270	11.529	10.569	0.8499	1.456	1.143	1304	1265	11.377	10.542
0.9554	1.731	1.330	1302	1268	12.804	11.804	0.9549	1.717	1.319	1301	1266	12.752	11.808

Table	J. (CUI	unueu)											
	$\eta/$	mPa∙s	v/	$\mathbf{m} \cdot \mathbf{s}^{-1}$		fr		η/r	nPa∙s	v/	$m \cdot s^{-1}$	e	fr
<i>X</i> 1	298.15	K 308.15 K	298.15	K 308.15 K	298.15 K	308.15 K	<i>X</i> 1	298.15 H	X 308.15 K	298.15 I	K 308.15 K	298.15 K	308.15 K
			1 (1)	5 .1 11	(0)	00001011				1 (1)	a 11	(0)	00011011
	2	-Ethoxyetha	anol (1) +	Ethylbenzo	ene (2)			2	-Ethoxyeth	anol (1) +	- Cyclohexa	ne (2)	
0.0573	0.658	0.557	1315	1272	2.778	2.713	0.0542	0.903	0.755	1249	1204	2.341	2.251
0.1487	0.696	0.597	1311	1267	3.288	3.292	0.1507	0.920	0.775	1242	1195	3.016	2.943
0.2498	0.749	0.648	1306	1265	3.839	3.955	0.2541	0.952	0.805	1237	1191	3.829	3.758
0.3527	0.817	0.708	1302	1264	4.558	4.739	0.3508	0.996	0.841	1235	1193	4.695	4.596
0.4489	0.895	0.773	1300	1264	5.467	5.619	0.4520	1.057	0.888	1236	1198	5.725	5.557
0.4998	0.944	0.812	1300	1264	6.053	6.149	0.5000	1.093	0.915	1238	1202	6.258	6.046
0.5485	0.995	0.852	1301	1264	6.682	6.695	0.5497	1.135	0.945	1241	1206	6.840	6.572
0.6501	1.121	0.945	1302	1264	8.174	7.944	0.6534	1.240	1.019	1249	1217	8.155	7.742
0.7484	1.273	1.050	1304	1264	9.763	9.242	0.7527	1.368	1.105	1260	1229	9.517	8.945
0.8508	1.469	1.178	1305	1264	11.399	10.591	0.8492	1.524	1.206	1274	1242	10.925	10.193
0.9547	1.721	1.331	1301	1265	12.784	11.822	0.9552	1.741	1.341	1294	1259	12.532	11.638
		9 Durtormo	thenel (1)	Deman	(9)				9 Dutomio	thenel (1) Taluana	(9)	
0.0552	0 6 4 9	2-Duloxye	1 201 (1)	1955	2 (2) 9 007	9 764	0.0550	0 502	2-Duloxye	1202	1961	2 077	9 0 1 7
0.0000	0.048	0.362	1291	1200	2.00/	2.704	0.0550	0.593	0.531	1303	1201	2.977	2.017
0.1496	0.736	0.631	1283	1250	3.844	3.575	0.1509	0.678	0.597	1301	1260	3.879	3.536
0.2488	0.845	0.717	1281	1249	4.746	4.350	0.2513	0.784	0.679	1302	1261	4.730	4.242
0.3504	0.978	0.821	1282	1250	5.579	5.074	0.3489	0.909	0.775	1303	1262	5.497	4.887
0.4555	1.144	0.949	1286	1254	6.360	5.757	0.4511	1.066	0.896	1304	1264	6.256	5.527
0.4995	1.223	1.011	1288	1256	6.666	6.025	0.5015	1.156	0.965	1305	1265	6.618	5.830
0.5504	1.323	1.088	1291	1258	7.006	6.323	0.5525	1.257	1.042	1306	1267	6.974	6.128
0.6482	1.543	1.258	1295	1262	7.622	6.857	0.6512	1.483	1.215	1306	1270	7.639	6.682
0.7535	1.830	1.479	1299	1268	8.231	7.378	0.7494	1.759	1.425	1306	1273	8.255	7.200
0.8483	2.143	1.718	1302	1273	8.735	7.795	0.8498	2.105	1.689	1306	1277	8.815	7.695
0.9556	2.575	2.048	1304	1281	9.251	8.205	0.9541	2.551	2.030	1305	1282	9.287	8.763
		2 Putowood	thanal (1)) ± o Vylono	(9)				9 Butowet	hanal (1)	⊥ m Vulon	o (9)	
0.0540	0 707	2-Buloxye	1945 (1)	+ 0-Aylene	e (2)	0.050	0.0500	0.095	2-Buloxyet	nanoi (1)	+ <i>III</i> -Aylen	e (2)	9.010
0.0349	0.797	0.000	1040	1314	2.000	2.002	0.0500	0.025	0.334	1017	1279	2.070	2.010 0.101
0.14/5	0.891	0.756	1339	1303	3.513	3.387	0.1520	0.711	0.602	1312	1275	3.248	3.181
0.2508	1.004	0.840	1334	1295	4.248	3.995	0.2496	0.813	0.686	1308	1272	3.875	3.776
0.3485	1.129	0.933	1330	1291	4.975	4.572	0.3506	0.941	0.786	1306	1270	4.553	4.400
0.4527	1.286	1.052	1325	1288	5.769	5.186	0.4512	1.095	0.908	1305	1270	5.248	5.014
0.5000	1.366	1.113	1323	1287	6.131	5.463	0.5022	1.185	0.979	1305	1270	5.606	5.320
0.5489	1.457	1.182	1320	1286	6.504	5.749	0.5529	1.284	1.056	1305	1270	5.965	5.622
0.6483	1.666	1.341	1316	1278	7.248	6.327	0.6487	1.501	1.225	1307	1271	6.653	6.186
0.7518	1.925	1.540	1312	1282	7.985	6.924	0.7505	1.781	1.442	1309	1273	7.407	6.782
0.8493	2.216	1.765	1308	1281	8.622	7.484	0.8511	2.122	1.704	1309	1277	8.186	7.385
0.9524	2.586	2.053	1305	1283	9.211	8.077	0.9549	2.560	2.037	1307	1282	9.048	8.046
		2-Butoxyet	thanol (1)	+ p-Xylene	e (2)			2-	Butoxyetha	nol (1) +	Ethylbenz	ene (2)	
0.0541	0.647	0.566	1306	1273	2.588	2.515	0.0546	0.678	0.568	1315	1274	2.659	2.616
0.1518	0.725	0.625	1303	1268	3.246	3.207	0.1505	0.769	0.643	1311	1272	3.289	3.166
0.2496	0.817	0.695	1301	1266	3.922	3.868	0.2513	0.877	0.732	1309	1270	3.977	3.780
0.3502	0.933	0.784	1301	1265	4.661	4.525	0.3501	1.003	0.835	1307	1270	4.671	4.391
0 4510	1 076	0 894	1301	1265	5 439	5 165	0 4528	1 161	0.961	1306	1271	5 391	5 020
0.5028	1 169	0.961	1301	1266	5 850	5 489	0.4982	1 240	1 025	1306	1271	5 706	5 293
0.5533	1 256	1 033	1302	1266	6 256	5 801	0.5500	1 330	1 103	1307	1979	6 064	5 602
0.6489	1.200	1 194	1302	1268	7 025	6 380	0.6497	1.560	1.103	1307	1272	6 747	6 190
0.0403	1 730	1.104	1302	1200	7 813	6 975	0.0457	1 821	1.277	1307	1276	7 151	6 783
0.7433	2 002	1.404	1204	1276	9 561	7 561	0.7511	2 156	1.407	1207	1270	0 10C	7 270
0.0561	2.092	2 020	1204	1270	0.301	7.JUI Q 195	0.0507	2.130	2 071	1205	1279	0.100	0 007
0.9301	2.551	2.029	1304	1202	9.215	0.125	0.3014	2.001	2.071	1305	1203	9.095	0.007
	2	2-Butoxyeth	anol (1) +	+ Cyclohexa	ne (2)								
0.0557	0.950	0.790	1244	1206	2.372	2.238							
0.1501	1.046	0.866	1236	1202	3.018	2.869							
0.2504	1.162	0.958	1237	1202	3.704	3.556							
0.3543	1.300	1.066	1242	1206	4.419	4.260							
0.4488	1.443	1.178	1250	1212	5.080	4.885							
0.5025	1.532	1.248	1255	1216	5.461	5.228							
0.5493	1.616	1.313	1260	1220	5.799	5.521							
0.6485	1.813	1.465	1269	1229	6.534	6.127							
0.7494	2.043	1.642	1278	1241	7.313	6.733							
0.8511	2.311	1.848	1287	1255	8,140	7.354							
0.9556	2,631	2.091	1298	1275	9,043	8.037							

or two $-CH_3$ groups and the CH_3-CH_2- group on the aromatic ring system affects the balance between the above-mentioned opposing effects due to steric hindrance.

Dynamic Viscosities, η . The experimentally measured η values for the 21 mixtures at T = (298.15 and 308.15) K are listed in Table 5. The one parameter Grunberg–Nissan

Table 6. Parameters of Eq 2 for the Mathematical Representation of Various Excess an	d Deviation Functions for
Alkoxyethanols (1) + Aromatic Hydrocarbons (2) and + Cyclohexane (2) at $T = (298.15 \times 10^{-5})$	nd 308.15) K

	<i>T</i> = 298.15 K				T = 308.15 K				T = 298.15 K				<i>T</i> = 308.15 K				
	a_0	a_1	a_2	σ	a_0	a_1	a_2	σ	a_0	a_1	a_2	σ	a_0	a_1	a_2	σ	
	Methoxyethanol (1) + Benzene (2) Methoxyethanol (1) + Toluene (2)																
$\delta v/\mathbf{m}\cdot\mathbf{s}^{-1}$	-81.9	31.0	-25.3	0.4	-104.3	-12.1	-14.6	0.5	-60.3	21.1	-30.2	0.4	-91.1	-41.4	-28.0	0.3	
$\kappa_s^{\rm E}/{\rm TPa^{-1}}$	-5	-39	47	1.0	12	1	11	0.1	0.4	-34	35	0.5	31	18	14	0.9	
$\delta \epsilon_{\rm r}$	-6.962	5.652	6.966	0.001	-4.106	4.429	4.017	0.001	-4.995	5.248	7.054	0.001	-3.254	4.486	3.329	0.001	
		Μ	ethoxyet	thanol	(1) + o - X	ylene (2		Methoxyethanol (1) + m -Xylene (2)									
$\delta v/\mathbf{m} \cdot \mathbf{s}^{-1}$	-62.9	21.9	-25.8	0.4	-118.0	-0.0	-65.6	0.4	-66.7	8.9	-3.7	0.4	-94.3	-5.9	-24.3	0.3	
$\kappa_{\rm s}^{\rm E}/{\rm TPa^{-1}}$	45	-36	18	1.0	106	-18	55	0.6	31	-28	14	0.8	61	-19	7	0.5	
$\delta \epsilon_{ m r}$	-3.700	0.947	0.980	0.001	-3.623	0.227	0.192	0.001	-3.375	3.342	3.975	0.002	-3.052	6.600	7.289	0.001	
	Methoxyethanol (1) + p -Xylene (2) Methoxyethanol (1) + Ethylbenzene (2)																
$\delta v / \mathbf{m} \cdot \mathbf{s}^{-1}$	-60.9	-11.5	-18.6	0.4	-99.1	-44.3	-45.4	0.4	-1.4	36.6	1.2	0.3	-96.3	-40.9	-46.5	0.4	
$\kappa_{\rm s}^{\rm E}/{\rm TPa^{-1}}$	18	-14	13	0.7	60	9	29	0.7	35	-50	14	0.5	60	2	39	0.6	
$\delta \epsilon_{ m r}$	-4.017	3.307	4.979	0.001	-2.438	4.640	3.778	0.001	-4.950	3.396	5.767	0.001	-3.022	4.469	3.636	0.002	
		Met	hoxyeth	anol (1) + Cyclo	hexane		Ethoxyethanol (1) + Benzene (2)									
$\delta v/m \cdot s^{-1}$	-199.6	-26.1	41.1	0.3	-230.7	79.0	99.3	0.4	-46.4	94.8	7.2	0.3	-51.7	12.7	25.4	0.3	
$\kappa_{\rm s}^{\rm E}/{\rm TPa^{-1}}$	108	-22	-59	1.6	146	-7	87	1.3	-32	-94	2	0.1	-28	5	-28	0.1	
$\delta \epsilon_{ m r}$	-6.845	1.251	2.129	0.001	-4.041	0.756	-1.257	0.001	-5.007	3.866	4.577	0.001	-2.547	4.830	0.701	0.001	
o / 1		E	Ethoxyet	hanol	(1) + Tol	uene (2)		Ethoxyethanol $(1) + o$ -Xylene (2)									
$\partial v/\mathbf{m} \cdot \mathbf{s}^{-1}$	-24.6	66.9	-3.1	0.3	-27.8	32.3	-23.7	0.3	-31.5	18.4	-6.4	0.4	-74.6	32.0	17.4	0.4	
$\kappa_{\rm s}^{\rm L}/{\rm TPa^{-1}}$	-33	-/1	10	0.1	-25	-44	28	0.4	13	-35	-2	0.5	02	-41	-25	0.1	
$\partial \epsilon_{\rm r}$	-2.268	2.906	3.216	0.001	-0.769	2.393	2.073	0.001	-2.437	3.348	3.139	0.001	-2.817	2.236	2.971	0.001	
S. /ma. a-1	Ethoxyethanol (1) + m -Xylene (2)									Ethoxyethanol (1) + p -Xylene (2)							
$\frac{\partial v}{\partial \mathbf{n}}$	-44.0 19	-63	01.4 	0.3	-41.0 15	-60	-38 -38	0.5	-39.4 -1	47.4 67	-70	0.5	-55.5 25	-68	-12.4 15	0.2	
κ _s /Ira ·	-2 121	3 739	3 879	0.001	-1 603	2 592	1 705	0.001	-3 375	3 581	4 461	0.001	-1740	1 341	3 882	0.4	
oer	$Ue_{\rm r} = -2.121 \ 3.737 \ 3.677 \ 0.001 = 1.003 \ 2.392 \ 1.703 \ 0.001 = 3.573 \ 3.561 \ 4.401 \ 0.001 = 1.740 \ 1.341 \ 3.882 \ 0.00$															0.001	
$\delta v/m \cdot s^{-1}$	-35 7	46.3	50 2	04	-30.7	19 1	-26 7	02	-1454	27 27	32 9	04	-144.0	56 7	~) -14 9	04	
κ^{E}/TPa^{-1}	0	-59	-46	0.4	2	-31	34	0.5	67	-7	-70	0.4	66	-97	29	0.4	
$\delta \epsilon_r$	-4.438	3.105	6.953	0.001	-2.234	2.058	3.722	0.001	-4.147	0.441	0.908	0.001	-2.945	0.048	0.345	0.001	
		P	Sutoxvet	hanol (1) + Ben	zene (2)				F	Butoxvet	hanol	(1) + Tob	uene (2)			
$\delta v/\mathbf{m} \cdot \mathbf{s}^{-1}$	-56.0	89.0	-29.9	0.4	-76.9	33.7	-35.4	0.3	4.1	18.4	-17.1	0.4	-37.3	2.7	-15.3	0.4	
$\kappa_{\rm s}^{\rm E}/{\rm TPa^{-1}}$	-3	-69	22	0.4	20	0	29	0.4	-42	-26	-1	0.1	16	0	-19	0.1	
$\delta \epsilon_{\rm r}$	0.489	-0.177	0.288	0.001	0.590	0.187	0.214	0.001	1.245	0.268	1.098	0.001	0.459	0.088	0.203	0.001	
		В	Butoxyet	hanol ($(1) + o - X_{y}$	vlene (2)		Butoxyethanol $(1) + m$ -Xylene (2)									
$\delta v/{ m m}\cdot{ m s}^{-1}$	-9.9	-3.5	$-7.\check{6}$	0.4	-63.0	27.4	-52.2	0.2	-27.7	47.6	41.Š	0.4	-56.5	ັ3.9 ີ	-18.0		
κ_{s}^{E}/TPa^{-1}	-6	-10	22	0.4	56	-36	57	0.5	1	-56	-46	0.4	40	-8	14	0.1	
$\delta \epsilon_{ m r}$	-0.052	1.525	0.208	0.001	-0.395	0.086	-0.121	0.001	-1.719	-0.080	-0.593	0.001	-0.484	-0.091	-0.724	0.001	
		В	utoxyetl	hanol ($1) + p - X_{y}$	ylene (2)		Butoxyethanol (1) + Ethylbenzene (2)									
$\delta v/\mathbf{m}\cdot\mathbf{s}^{-1}$	-19.0	19.3	-2.6	0.3	-60.7	6.8	-9.0	0.4	-16.9	31.6	1.8	0.4	-36.8	4.6	-12.6	0.4	
$\kappa_{\rm s}^{\rm E}/{\rm TPa^{-1}}$	-14	-24	14	0.4	39	0	32	0.5	-8	-41	-9	0.1	15	-10	22	0.4	
$\delta \epsilon_{ m r}$	-0.561	1.631	0.776	0.001	0.570	-0.028	0.262	0.001	-1.251	-0.287	-1.264	0.001	-0.530	-0.054	-0.803	0.001	
		But	toxyetha	nol (1)	+ Cyclo	hexane (2)										
$\delta v/\mathbf{m}\cdot\mathbf{s}^{-1}$	-103.7	82.6	-78.8	0.4	-144.5	15.8	-54.6	0.3									
$\kappa_{\rm s}^{\rm E}/{\rm TPa^{-1}}$	30	-98	98	0.4	81	-32	82	0.4									
$\delta \epsilon_r$	-2.530	-0.458	-0.060	0.001	-0.842	-0.145	-0.961	0.001									

(GN), two parameter McAllister (Mc), and three parameter Auslander (A) equations were employed to correlate the dynamic and kinematic viscosities, η , ν , and viscosity ratios.

$$\ln \eta_{12} = x_1 \ln \eta_1 + x_2 \ln \eta_2 + x_1 x_2 G_{12} \tag{3}$$

$$\ln v_{12} = x_1^{3} \ln v_1 + 3x_1^{2} x_2 \ln M_{12} + 3x_1 x_2^{2} \ln M_{21} + x_2^{3} \ln v_2 - \ln \left(x_1 + \frac{x_2 M_2}{M_1}\right) + 3x_1^{2} x_2 \ln \left(\frac{2}{3} + \frac{M_2}{3M_1}\right) + 3x_1 x_2^{2} \ln \left(\frac{1}{3} + \frac{2M_2}{3M_1}\right) + x_2^{3} \ln \left(\frac{M_2}{M_1}\right)$$
(4)

$$x_1(x_1 + B_{12}x_2)(\eta_{12} - \eta_1) + A_{21}x_2(B_{21}x_1 + x_2)(\eta_{12} - \eta_2) = 0$$
(5)

These equations are particularly selected because the characteristic constant parameter G_{12} of eq 3 allows for the positive and negative deviations from the additivity rule,

eq 4 is based on Eyring theory on absolute reaction rates with a three body model, and eq 5 involves three parameters. The Grunberg–Nissan and McAllister equations correlated the viscosities excellently with maximum σ values of 0.001 mPa·s. However, the application of the Auslander equation has yielded σ values ranging from 0.013 to 0.146.

Speeds of Sound, v, and Excess Isentropic Compressibilities, κ_s^E . The data of experimental speeds of sound are listed in Table 5. The speeds of sound were also calculated using free length theory (FLT) and collision factor theory (CFT) approaches and Nomoto and Junjie equations.²² The various thermophysical quantities of pure liquids needed for the calculation of speeds of sound have been listed in Table 1. The standard percentage deviation, σ /%, for the experimental and predicted values ranged from 0.4 to 13.4 for different approaches. Hence, it is stated that the above four approaches fail to predict the speeds of sound in these mixtures.

Figure 4. Variation of relative permittivity deviations, $\delta \epsilon_r$, with alkoxyethanol mole fraction for the binary mixtures of methoxyethanol (a), ethoxyethanol (b), and butoxyethanol (c) + aromatic hydrocarbons and + cyclohexane at 298.15 K. (The symbols are the same as those in Figure 1.) Solid lines are fitted values calculated using coefficients from Table 6 and eq 2.

The deviations in speed of sound, $\delta \upsilon$, and excess isentropic compressibilities, $\kappa_s^E,$ were calculated using the relations

$$\delta v/\mathbf{m} \cdot \mathbf{s}^{-1} = v_{12} - (\phi_1 v_1 + \phi_2 v_2)$$
(6)

$$\kappa_{\rm s}^{\rm E}/{\rm TPa}^{-1} = \kappa_{\rm s} - \kappa_{\rm s}^{\rm id} \tag{7}$$

where κ_s is the isentropic compressibility and was calcu-

lated using the Laplace equation, that is, $\kappa_s = 1/(v^2 \rho)$, and κ_s^{id} was calculated from the relation

$$\kappa_{\rm s}^{\rm id} = \sum_{i=1}^{2} \phi_{\rm i} [\kappa_{{\rm s},i} + TV_{i}(\alpha_{i}^{2})/C_{{\rm p},i}] - \{T(\sum_{i=1}^{2} x_{i}V_{i})(\sum_{i=1}^{2} \phi_{i}\alpha_{i})^{2}/\sum_{i=1}^{2} x_{i}C_{{\rm p},i}\}$$
(8)

and the ϕ_i is the ideal state volume fraction and is defined by the relation

$$\phi_i = x_i V_i (\sum_{i=1}^2 x_i V_i)$$
(9)

The δv and κ_s^E are also smoothed through use of eq 2. The summary of the smoothing coefficients, a_i , and σ values is given in Table 6. The maximum uncertainties in δv and $\bar{\kappa}_{s}^{E}$ values have been found to be 0.5 m·s⁻¹ and 0.9 TPa⁻¹. The variation of δv as a function of alkoxyethanol mole fraction for the binary mixtures at T = 298.15 K is shown in Figure 2. It can be seen from the figure that, for methoxyethanol containing mixtures, the δv values in general are large and negative except for the case of methoxyethanol + ethylbenzene, in which the profile showed an initial negative trend followed by positive points. Except in benzene containing mixtures, the δv values at equimole composition (i.e. $x_1 = 0.5$) have been found to be shifted to lesser negative magnitudes from methoxyethanol to ethoxyethanol to butoxyethanol. The rise in the temperature in general, however, tends to increase the negative δv values. The graphical variation of κ_s^E as a function of alkoxyethanol mole fraction for the binary mixtures at T = 298.15 K is shown in Figure 3. The κ_s^E values in cyclohexane containing mixtures at T = 298.15 K have been found to be large and positive in methoxyethanol and ethoxyethanol containing mixtures. The κ_s^E values, however, become less positive in the 2-butoxyethanol rich regions. The positive κ_s^E values indicate that the mixed species are overall more compressible and hence have large volumes due to the structure disruption effect of cyclohexane. The κ_s^E values in methoxyethanol + benzene, + toluene, + ethylbenzene and in ethoxyethanol and butoxyethanol + six aromatics have been found to be negative, especially in the alkoxyethanol rich region and at T =298.15 K. The rise in the temperature from T = (298.15 to)308.15) K increased the magnitude of κ_s^E values in these mixtures. The negative κ_s^E values indicate the dominance of weak but structure making $\mathbf{n} \cdot \cdot \cdot \pi$, $-\mathbf{OH} \cdot \cdot \cdot \pi$, and $-CH \cdot \cdot \pi$ interactions at T = 298.15 K, and the same get further weakened at elevated temperatures due to enhanced thermal motion.

Deviations in Relative Permittivities, $\delta \epsilon_{\mathbf{r}}$. The $\delta \epsilon_{\mathbf{r}}$ values are calculated using $\epsilon_{\mathbf{r},i}$ and $\epsilon_{\mathbf{r},12}$ values as listed in Tables 1 and 5 through the relation

$$\delta \epsilon_{\rm r} = \epsilon_{\rm r,12} - (\phi_1 \epsilon_{\rm r,1} + \phi_2 \epsilon_{\rm r,2}) \tag{10}$$

The values of the coefficients a_i needed for the mathematical representation of $\delta \epsilon_r$ and σ between the experimental and fitted values are listed in Table 6. The graphical representations of $\delta \epsilon_r$ as a function of alkoxyethanol mole fractions for the binary mixtures at T=298.15 K are shown in Figure 4. The profiles showed that $\delta \epsilon_r$ values in methoxyethanol containing mixtures are largely negative except a few small but positive points to the right of the figure. The magnitude of $\delta \epsilon_r$ values, however, was found to become less negative with the lengthening of alkyl chain in ethoxyethanol and butoxyethanol and also with the rise in the temperature. We did not, however, find any definite trend in $(\delta \epsilon_r)_{0.5}$ values among different aromatics for a given alkoxyethanol.

Acknowledgment

The authors thank Prof. Dr. R. M. Patel, the head of the department, for providing necessary laboratory facilities.

Literature Cited

- Vaidyanathan, G.; Herron, W. J.; Garvey, J. F. Mass Spectroscopic Investigation of 2-Methoxyethanol and 2-Ethoxyethanol Clusters. Magic Numbers and Structural Implications. *J. Phys. Chem.* 1993, *97*, 7880–7887.
- (2) Garvey, J. F.; Herron, W. J.; Vaidyanathan, G. Probing the Structure and Reactivity of Hydrogen-Bonded Clusters of the Type $\{M\}_n\{H_2O\}H^+$, via the Observation of Magic Numbers. *Chem. Rev.* **1994**, *94*, 1999–2014.
- (3) Douheret, G.; Davis, M. I. Measurements, Analysis and Utility of Excess Molar (δV/δp)_s. Chem. Soc. Rev. **1993**, 22, 43–50.
- (4) Davis, M. I. Thermodynamic and Related Studies of Amphiphile + Water Systems. *Chem. Soc. Rev.* **1993**, *22*, 127–134.
- (5) Matsuura, H.; Fukuhara, K.; Masatoki, S.; Sakakibara, M. Molecular Conformation of Nonionic Surfactants in the Solid State. A Raman Spectroscopic Study of a Homologous Series of α-Alky1-ω-hydroxyoligo(oxyethylenes). J. Am. Chem. Soc. 1991, 113, 1193–1202.
- (6) Matsuura, H.; Fukuhara, K. Raman Spectroscopic Study of the Molecular Conformation of α-Alkyl-ω-hydroxyoligo (oxyethylene) Surfactants in the Solid State. J. Phys. Chem. **1987**, 91, 6139– 6148.
- (7) Matsuura, H.; Fukuhara, K. Vibrational Specroscopic Studies on Conformation of Poly(oxyethylene). II Conformation-Spectrum Correlations. J. Polym. Phys. Sci., Part B: Polym. Phys. 1986, 24, 1383–1400.
- (8) Yoshida, H.; Takikawa, K.; Ohno, K.; Matsuura, H. Vibrational Spectroscopic Study of 2-Methoxyethanol: Matrix-Isolation Infrared Spectra and Conformational Analysis Based on ab Initio MO Calculations. J. Mol. Struct. 1993, 299, 141–147.
- (9) Murti, P. S.; van Winkle, M. Vapour-Liquid Equilibriums and Heat of Mixing: Octane-Ethylbenzene-Cellusolve System. *AIChE* J. 1957, 3, 517-522.
- (10) Cobos, J. C.; Garcia, I.; Casanova, C. Excess Properties of Mixtures of Some *n*-Alkoxyethanols with Organic Solvents. V. Excess Enthalpies of 2-Butoxyethanol with Normal Alkanes at 298.15 K. *Can. J. Chem.* **1988**, *66*, 2618–2620.
- (11) Benson, G. C.; Halpin, C. J.; Treszczanowicz, A. J. Excess Volumes and Isentropic Compressibilities for (2-Ethoxyethanol + *n*-Heptane) at 298.15K. *J. Chem. Thermodyn.* **1981**, *13*, 1175–1183.
- (12) Aminabhavi, T. M.; Gopalakrishna, B. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of 2-Ethoxyethanol with *n*-Alkanes (C₆ to C₁₂), 2,2,4-Trimethylpentane, and Cyclohexane in the Temperature Interval 298.15–313.15 K. J. Chem. Eng. Data **1995**, 40, 632–641.
- (13) Sastry, N. V.; Raj, M. M. Viscosity Behaviour of 2-Butoxyethanoln-Hexane Mixtures at 303.15 and 313.15 K. *Phys. Chem. Liq.* **1995**, *30*, 47–57.
- (14) Reddy, K. S. Excess Volumes of (Benzene + 2- Ethoxyethanol) at 303.15, 313.15, and 323.15 K. J. Chem. Thermodyn. 1984, 16, 597-598.
- (15) Krishnan, K. M.; Rambabu, K.; Venkateshwarlu, P.; Raman, G. K. A Study of Mixing Properties of Binary Mixtures of 2-Methoxyethanol with Aromatic Hydrocarbons. *J. Chem. Eng. Data* **1995**, *40*, 132–135.
- (16) Ohji, H.; Oskai, A.; Tamura, K.; Murakami, S.; Ogawa, H. Excess Enthapies of Binary Mixtures of 2-Ethoxyethanol with *n*-Octane, or Cyclohexane, or Benzene at T = 298.15 K. *J. Chem. Thermodyn.* **1998**, *30*, 761–765.
- (17) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, 4th ed.; Wiley-Interscience: New York, 1986; Vol. II.
- (18) Sastry, N. V.; Raj, M. M. Dielectric Constants, Molar Polarizations and Refractive Indexes for 2-Butoxyethanol + Hexane and + Heptane at 30 and 40 °C. J. Solution Chem. **1996**, 25, 1137– 1149.
- (19) Gill. F. P. S. C.; da Costa, A. M. A.; Dais, J. J. C. T. Conformational Analysis of CmH2m+10CH2CH2OH (*m* = 1–4): The Role of CH–O Intermolecular Interactions. *J. Phys. Chem.* **1995**, *99*, 8066–8070.
- (20) Nishimoto, M.; Tabata, S.; Tamura, K.; Murakami, S. Thermodynamic Properties of the Mixture of Methoxyethanol and Cyclohexane: Measurements at the Temperatures 293.15, 298.15

and 303.15 K Above and Below UCST. *Fluid Phase Equilib.* **1997**, *136*, 235–247.

- (21) Oswal, S. L.; Prajapati, K. D. Speeds of Sound, Isentropic Compressibilities, and Excess Molar Volumes of an Alkanol + Cycloalkane at 303.15 K. I. Results for Alkan-1-ol + Cyclohexane. J. Chem. Eng. Data 1998, 43, 367–372.
- (22) Sastry, N. V.; Patel, S. R. Densities, Viscosities, Sound Speeds, and Excess Properties of Binary Mixtures of Methyl Methacrylate with Alkoxyethanols and 1-Alcohols at 298.15 and 308.15 K. Int. J. Thermophys. 2000, 21, 1153–1173.
- (23) Douheret, G.; Pal, A.; Davis, M. I. Ultrasonic Speeds and Isentropic Functions of (a Alkoxyethanol + Water) at 298.15 K. *J. Chem. Thermodyn.* 1990, 22, 99–108.
- (24) Das, B.; Hazra, D. K. Viscosities and Excess Molar Volumes for 2-Methoxy-1-ethanol + Water at Different Temperatures. J. Chem. Eng. Data 1993, 38, 361–363.
- (25) Reddy, V. K.; Reddy, K. S.; Krishnaiah, A. Excess Volumes, Speeds of Sound, and Viscosities for Mixtures of 1, 2-Ethanediol and Alkoxy Alcohols with Water at 308.15 K. *J. Chem. Eng. Data* **1994**, *39*, 615–617.
- (26) Page, M.; Huot, J. Y.; Jolicoeur, C. A Thermodynamic Investigation of Aqueous 2-Methoxyethanol. J. Chem. Thermodyn. 1993, 25, 139–154.
- (27) Venkatesulu, D.; Venkatesu, P.; Rao, M. V. P. Viscosities and Densities of Trichloroethylene or Tetrachloroethylene with 2-Alkoxyethanol at 303.15 K and 313.15 K. *J. Chem. Eng. Data* **1997**, *42*, 365–367.
- (28) MacNeil, J. H.; Palepu, R. Viscosities and Densities of Binary Liquid Mixtures of 2-Butoxyethanol with Aniline and n-Alkylaniline. *Thermochim. Acta* **1989**, *149*, 275–286.
- (29) Sastry, N. V. Densities, Excess Volumes, Speeds of Sound and Excess Isentropic Compressibilities of 2-Butoxyethanol + n-Hexane and + n-Heptane Mixtures at 303.15 K and 313.15 K. Fluid Phase Equilib. 1997, 128, 173–181.
- (30) Bakshi, M. S. Thermodynamic Behaviour of Mixtures. Part I. Mixtures of Pyridine with β-Picoline, γ-Picoline, Isoquinoline, Benzene and Cyclohexane at 25 °C. *J. Chem. Soc., Faraday Trans.* **1993**, *89*, 2001–2005.
- (31) Aicart. I.; Tardajos, G.; Pena, M. D. Thermodynamics of (Cyclohexane + Benzene) at Various Temperatures. J. Chem. Thermodyn. 1980, 12, 1085–1091.
- (32) Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Refractive Index, Viscosity and Speed of Sound in Binary Mixtures of Cyclohexanone with Benzene, Methylbenzene, 1,4-Dimethylbenzene, 1,3,5-Trimethylbenzene and Methoxybenzene in Temperature Interval (298.15 to 308.15) K. J. Chem. Eng. Data 1999, 44, 446-450.
- (33) Nath, J.; Tripathi, A. D. Binary Systems of 1,1,2,2-Tetrachloroethane with Benzene, Toluene, *p*-Xylene, Acetone and Cyclohexane. Part 2. Dielectric Properties at 308.15 K. J. Chem. Soc., Faraday Trans. **1984**, 80, 1517–1524.
- (34) Reddy, K. S. Isentropic Compressibilities of Binary Liquid Mixtures at 303.15 and 313.15 K. J. Chem. Eng. Data 1986, 31, 238-243.
- (35) Ritzoulis, G.; Papadapoulos, N.; Jannakoudakis, D. Densities, Viscosities and Dielectric Constants of Acetonitrile + Toluene at 15, 25 and 35 °C. *J. Chem. Eng. Data* **1986**, *31*, 146–148.
- (36) Moumouzias, G.; Ritzoulis, G. Relative Permittivities and Refractive Indices of γ-Butyrolactone with *o*-Xylene and *m*-Xylene. J. Chem. Eng. Data **1999**, 44, 1273–1278.
- (37) Goud, B. B.; Venkatesu, P.; Prabhakara Rao, M. V. Excess Volumes and Viscosities of Isomeric Xylenes with *o*-Nitrotoluene and *m*-Nitrotoluene at 308.15 K. *J. Chem. Eng. Data* **1999**, *44*, 731–734.
- (38) Avraam. T.; Moumouzias, G.; Ritzoulis, G. A Study on Excess Volumes and Dielectric Properties in the γ -Butyrolactone with *p*-Xylene System at Various Temperatures. *J. Chem. Eng. Data* **1998**, *43*, 51–54.
- (39) Exarchos, N. C.; Margari, M. T.; Demetropoulos, J. W. Viscosities and Densities of Dilute Solutions of Glycerol Trioleate + Octane, + *p*-Xylene, + Toluene and + Chloroform. *J. Chem. Eng. Data* **1995**, *40*, 567–571.
- (40) Yadava, R. R.; Yadava, S. S. Viscometric Study of Molecular Interactions in Binary Liquid Mixtures of Polar & Nonpolar Solvents. Ind. J. Chem. 1981, 20A, 221-224.
- (41) Nath. J.; Dixit, A. P. Ultrasonic Velocities and Adiabatic Compressibilities for Binary Liquid Mixtures of Acetone with Benzene, Toluene, p-Xylene and Mesitylene at 308.15 K. J. Chem. Eng. Data 1984, 29, 320–321.
- (42) Rattan, V. K.; Sethi, B. P. S.; Raju, K. S. N. Ultrasonic Velocities, Densities and Viscosities of (Prop-2-en-1-ol + Ethylbenzene or Isopropylbenzene) at 298.15 and 308.15 K. Aust. J. Chem. 1989, 42, 1072–1084.
- (43) Ramadevi, R. S.; Venkatesu, P.; Prabhakara Rao, M. V. Viscosities and Binary Liquid Mixtures of N, N-Dimethylformamide with Substituted Benzenes at 303.15 and 313.15 K. *J. Chem. Eng. Data* **1996**, *41*, 479–481.

- (44) Aicart, E.; Tardajos, G.; Pena, M. D. Compressibilities of Cyclohexane and Toluene Mixtures at Various Temperatures. J. Solution Chem. 1982, 11, 557–564.
- (45) Joshi, S. S.; Aminabhavi, T. M.; Balundgi, R. H.; Shukla, S. S. Densities and Viscosities of Binary Liquid Mixture of Nitrobenzene with Cyclohexane and N,N-Dimethylformamide. *J. Chem. Eng. Data* **1990**, *35*, 185–187.
- (46) Barbes, B.; Garcia, I.; Gonzalez, J. A.; Cobos, J. C.; Casanova, C. Excess Properties of Mixtures of Some *n*-Alkoxyethanols with Organic Solvents. Part 7. V^E with Toluene at 298.15 K. *Thermochim. Acta* **1995**, *257*, 103–110.

Received for review January 7, 2003. Accepted April 23, 2003.

JE034005Y